K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 2 2020

https://hoc24.vn/hoi-dap/question/815591.html

Bạn tham khảo

17 tháng 2 2020

mơn bạn nhìu!!!!!!!!!!!!!!!

22 tháng 2 2019

\(A=8\left(x-2\right)^4+8\ge8\)

23 tháng 2 2019

chúc mừng bạn đã hoàn thành bài làm khi mình đã biết làm 

vì vậy mình sẽ ko cho bạn

30 tháng 9 2018

MÀY vào câu hỏi tương tự .

Tao không rảnh

Ok?

30 tháng 9 2018

deo lm dc ns me di can may binh luan ak

NV
24 tháng 10 2019

\(A\le\left|x\right|+\sqrt{2}+\left|y\right|+1=6+\sqrt{2}\)

\(A_{max}=6+\sqrt{2}\) khi \(\left\{{}\begin{matrix}x\le0\\y\le0\\\left|x\right|+\left|y\right|=5\end{matrix}\right.\)

\(A\ge\left|x+y-\sqrt{2}-1\right|\ge4-\sqrt{2}\)

\(A_{min}=4-\sqrt{2}\) khi \(\left\{{}\begin{matrix}x\ge\sqrt{2}\\y\ge1\\x+y=5\end{matrix}\right.\)

2/ \(A\ge\frac{1}{3}\left(x^2+y^2+z^2\right)^2\ge\frac{1}{3}\left(xy+yz+zx\right)^2=\frac{1}{3}\)

\(A_{min}=\frac{1}{3}\) khi \(x=y=z=\frac{1}{\sqrt{3}}\)

24 tháng 10 2019

làm thế để có dòng đầu tiên ở câu a vậy ạ?

15 tháng 5 2019

Vì (x−1)2 ≥ 0 ∀ x

(x−3)4 ≥ 0 ∀ x

6(x−1)2(x−2)2 ≥ 0 ∀ x

=> (x−1)2+(x−3)4+6(x−1)2(x−2)2 ≥ 0 ∀ x

=>A≥ 0 ∀ x

=>Amin=0. Dấu "=" xảy ra khi và chỉ khi :

(x−1)2=0⇔x=1 và (x−3)4=0 ⇔ x=3 và 6(x−1)2(x−2)2⇔ x=1 hoặc x=2

Vì x chỉ có 1 giá trị duy nhất trong biểu thức nên x = ∅.

NV
15 tháng 5 2019

Đặt \(x-2=a\Rightarrow\left\{{}\begin{matrix}x-1=a+1\\x-3=a-1\end{matrix}\right.\)

\(A=\left(a+1\right)^4+\left(a-1\right)^4+6\left(a+1\right)^2a^2\)

\(A=a^4+4a^3+6a^2+4a+1+a^4-4a^3+6a^2-4a+1+6a^2\left(a-1\right)^2\)

\(A=2a^4+12a^2+6a^2\left(a-1\right)^2+2\ge2\)

\(\Rightarrow A_{min}=2\) khi \(a=0\Leftrightarrow x=2\)

4 tháng 8 2017

a)2x^2-4xy+4y^2+2x+5=x^2-4xy+4y^2+x^2+2x+1+4=(x-2y)^2+(x+1)^2+4>=4(dấu = tự tìm nhé)

b)x(1-x)(x-3)(4-x)=x(x-1)(x-3)(x-4)

=(x^2-4x)(x^2-4x+3)

Đặt x^2-4x=t(t>=-4) bt viết lại t(t+3)=t^2+3t>=-9/4

Dấu= xảy ra khi t=-3/2 >>>tìm x

5 tháng 5 2021

tìm cả đk giúp mik vs

NV
5 tháng 5 2021

ĐKXĐ: \(x>0;x\ne1\)

\(A=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{2\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}-\dfrac{2-x}{x\left(\sqrt{x}+1\right)}\right)\)

\(=\left(\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{x+2\sqrt{x}}{x\left(\sqrt{x}+1\right)}\right)\)

\(=\dfrac{\left(x+2\sqrt{x}\right).x.\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x+2\sqrt{x}\right)}=\dfrac{x}{\sqrt{x}-1}\)

b.

\(x=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\Rightarrow\sqrt{x}=\sqrt{3}+1\)

\(\Rightarrow A=\dfrac{4+2\sqrt{3}}{\sqrt{3}+1-1}=\dfrac{4+2\sqrt{3}}{\sqrt{3}}=\dfrac{6+4\sqrt{3}}{3}\)

c.

Để \(\sqrt{A}\) xác định \(\Rightarrow\sqrt{x}-1>0\Rightarrow x>1\)

Ta có:

\(\sqrt{A}=\sqrt{\dfrac{x}{\sqrt{x}-1}}=\sqrt{\dfrac{x}{\sqrt{x}-1}-4+4}=\sqrt{\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}-1}+4}\ge\sqrt{4}=2\)

Dấu "=" xảy ra khi \(\sqrt{x}-2=0\Rightarrow x=4\)

29 tháng 8 2021

Giấ trị nhỏ nhất là 8

29 tháng 8 2021

GTNN = 8 đạt khi   t=0\Leftrightarrow x=2