Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Tìm GTLN : Áp dụng BĐT bunhiacopski, ta có :
Dầu bằng xảy ra khi \(x-1=5-x\Leftrightarrow x=3\).
Sao ko hiện làm lại :
\(\left(\sqrt{x-1}.1+\sqrt{5-x}.1\right)^2\le\) bé hơn hoặc bằng ( 1 + 1 ) ( x - 1 + 5 -x ) = 8
\(A\le\left|x\right|+\sqrt{2}+\left|y\right|+1=6+\sqrt{2}\)
\(A_{max}=6+\sqrt{2}\) khi \(\left\{{}\begin{matrix}x\le0\\y\le0\\\left|x\right|+\left|y\right|=5\end{matrix}\right.\)
\(A\ge\left|x+y-\sqrt{2}-1\right|\ge4-\sqrt{2}\)
\(A_{min}=4-\sqrt{2}\) khi \(\left\{{}\begin{matrix}x\ge\sqrt{2}\\y\ge1\\x+y=5\end{matrix}\right.\)
2/ \(A\ge\frac{1}{3}\left(x^2+y^2+z^2\right)^2\ge\frac{1}{3}\left(xy+yz+zx\right)^2=\frac{1}{3}\)
\(A_{min}=\frac{1}{3}\) khi \(x=y=z=\frac{1}{\sqrt{3}}\)
Áp dụng bổ đề \(\left|a\right|-\left|b\right|\le\left|a-b\right|\)
Ta có \(A=\left|x-\sqrt{2}\right|+\left|y-1\right|\ge\left|x\right|+\left|y\right|-\left(\left|\sqrt{2}\right|+1\right)\)
\(\Rightarrow A\ge5-\sqrt{2}-1=4-\sqrt{2}\)
Mình mới biết làm Min thôi , thông cảm :>>
a) ĐK \(x\ge1\)
với \(x\ge1\Rightarrow\hept{\begin{cases}\sqrt{x-1}\ge0\\\sqrt{5+x}\ge\sqrt{6}\end{cases}\Rightarrow\sqrt{x-1}+\sqrt{5+x}\ge\sqrt{6}}\)
dâu = xảy ra <=>x=1
b)Dặt ...=A
Ta có A=\(\frac{2}{9}x+\frac{1}{2x}+\frac{2}{9}y+\frac{1}{2y}+\frac{7}{9}\left(x+y\right)\)
Áp dụng BĐT cô-si, ta có \(\frac{2}{9}x+\frac{1}{2x}\ge\frac{2}{3}\)
tương tự có \(\frac{2}{9}y+\frac{1}{2y}\ge\frac{2}{3}\)
Mà \(x+y\ge3\Rightarrow\frac{7}{9}\left(x+y\right)\ge\frac{7}{3}\)
=>\(A\ge\frac{2}{3}+\frac{2}{3}+\frac{7}{3}=\frac{11}{3}\)
Dấu = xảy ra <=>\(x=y=\frac{3}{2}\)
^_^
\(P\le\sqrt{3\left(\sum\dfrac{1}{\left(x+y\right)^2+\left(x+1\right)^2+4}\right)}\le\sqrt{3\left(\sum\dfrac{1}{4xy+4x+4}\right)}\)
\(P\le\sqrt{\dfrac{3}{4}\sum\left(\dfrac{1}{xy+x+1}\right)}=\dfrac{\sqrt{3}}{2}\)
\(P_{max}=\dfrac{\sqrt{3}}{2}\) khi \(x=y=z=1\)
Đặt \(a=x^2;b=y^2\left(a;b\ge0\right)\)
\(A=\frac{\left(a-b\right)\left(1-ab\right)}{\left(1+a\right)^2\left(1+b\right)^2}\)
\(\left|A\right|=\frac{\left|\left(a-b\right)\left(1-ab\right)\right|}{\left(1+a\right)^2\left(1+b^2\right)}\le\frac{\left(a+b\right)\left(1+ab\right)}{\left(1+a\right)^2\left(1+b\right)^2}\)
\(\left(1+a\right)\left(1+b\right)=\left(a+b\right)+\left(1+ab\right)\ge2\sqrt{\left(a+b\right)\left(1+ab\right)}\)
\(\Rightarrow\left(a+1\right)^2\left(b+1\right)^2\ge4\left(a+b\right)\left(1+ab\right)\)
\(\Rightarrow\left|A\right|\le4\)
\(\Rightarrow-4\le A\le4\)
\(A=-4\Leftrightarrow a=0;b=1\Leftrightarrow x=0;y=+1or-1\)
\(A=4\Leftrightarrow a=1;b=0\Leftrightarrow x=+-1;y=0\)
Vậy \(MinA=-4;MaxA=4\)
Ta có \(\frac{1}{P}=\frac{\left(x+yz\right)\left(y+zx\right)\left(z+xy\right)^2}{x^3y^3}=\frac{x+yz}{y}\cdot\frac{y+zx}{x}\cdot\frac{\left(z+xy\right)^2}{x^2y^2}\)
\(=\left(\frac{x}{y}+z\right)\left(\frac{y}{x}+z\right)\left(\frac{z}{xy}+1\right)^2=\left[1+\left(\frac{x}{y}+\frac{x}{y}\right)z+x^2\right]\left(\frac{z}{xy}+1\right)^2\ge\left(1+2x+x^2\right)\)\(\left[\frac{4x}{\left(x+y\right)^2}+1\right]^2\)\(=\left(z+1\right)^2\left[\frac{4z}{\left(z-1\right)^2}+1\right]^2=\left[\frac{4z\left(z+1\right)}{\left(z-1\right)^2}+1\right]^2=\left[6+\frac{12}{z-1}+\frac{8}{\left(z-1\right)^2}+z-1\right]^2\)
\(=\left[6+\frac{12}{z-1}+\frac{3\left(z-1\right)}{4}+\frac{8}{\left(z-1\right)^2}+\frac{z-1}{8}+\frac{z-1}{8}\right]\)
Áp dụng BĐT Cosi ta có:
\(\frac{1}{P}\ge\left[6+2\sqrt{\frac{12}{z-1}\cdot\frac{3\left(z-1\right)}{3}}+3\sqrt[3]{\frac{8}{\left(z-1\right)^2}\cdot\frac{z-1}{8}\cdot\frac{z-1}{8}}\right]^2=\frac{729}{4}\)
\(\Rightarrow P\le\frac{4}{729}\). dấu "=" xảy ra <=> \(\hept{\begin{cases}x=y=2\\z=5\end{cases}}\)