Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 3 số đó lần lượt là x-1;x;x+1 (x-1)x+x(x+1)+(x+1)(x-1)=26 <=>x 2 -x+x 2+x+x 2 -1=26 <=>3x 2 -1=26 <=>3x 2=27 <=>x 2=9 <=>x=3 Vậy 3 số đó lần lượt là 2;3;4
Bạn ơi hình như thiếu trường hợp 3 số tự nhiên liên tiếp -2 , -3 , -4
1:vì 2 số TNLT có 1 số lẻ & 1 số chẵn => trong 2 số đó sẽ có 1 số chia hết cho 2
1. Trong 2 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 2
=> tích 2 số đó chia hết cho 2.
2. Trong 2 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 2;
trong 3 số tự nhiên liên tiếp có it nhất 1 số chia hết cho 3
Mà (2;3) = 1
=> Tích 3 số đó chia hết cho 2.3 = 6.
Gọi 5 số tự nhiên liên tiếp là n- 2; n - 1; n ; n + 1; n + 2
Ta có : (n-2)2 + (n-1)2 + n2 + (n+1)2 + (n +2)2 = (n2 - 4n + 4) + (n2 - 2n + 1) + n2 + (n2 + 2n + 1)+( n2 + 4n + 4) = 5n2 + 10 = 5.(n2 + 2)
Ta có 5. (n2 + 2) chia hết cho 5 nhưng không chia hết cho 25
vì n2 + 2 không chia hết cho 5 (do n2 có thể tận cùng là 0;1;4;5;6;9 )
=> 5.(n2 + 2) không là số chính phương => đpcm
Dãy số có 2 chữ số chia hết cho 3 là:[12,15,....,99]
Khoảng cách của từng số hạng là 3
Số số hạng là: (99-12):3+1=30(số)
Vậy có 30 số có 2 chữ số chia hết cho 3
Bài 1: Chứng minh rằng mọi số nguyên x, y thì:
A = (x + y)(x + 2y)(x + 3y)(x + 4y) + là số chính phương.
Giải: Ta có A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y4
= (x2 + 5xy + 4y2)(x2 + 5xy + 6y2) + y4
Đặt x2 + 5xy + 5y2 = t (t ∈ Z) thì
A = (t - y2)(t + y2) + y4 = t2 - y4 + y4 = t2 = (x2 + 5xy + 5y2)2
Vì x, y, z ∈ Z nên x2 ∈ Z, 5xy ∈ Z, 5y2 ∈ Z => (x2 + 5xy + 5y2) ∈ Z
Vậy A là số chính phương.
Bài 2: Chứng minh tích của 4 số tự nhiên liên tiếp cộng 1 luôn là số chính phương.
Giải: Gọi 4 số tự nhiên, liên tiếp đó là n, n + 1, n + 2, n + 3 (n ∈ Z). Ta có:
n(n + 1)(n + 2)(n + 3) + 1 = n . ( n + 3)(n + 1)(n + 2) + 1
= (n2 + 3n)(n2 + 3n + 2) + 1 (*)
Đặt n2 + 3n = t (t ∈ N) thì (*) = t(t + 2) + 1 = t2 + 2t + 1 = (t + 1)2
= (n2 + 3n + 1)2
Vì n ∈ N nên n2 + 3n + 1 ∈ N. Vậy n(n + 1)(n + 2)(+ 3) + 1 là số chính phương.
Ta có: \(A=n^2+4n+3\)
\(A=n^2+n+3n+3\)
\(A=\left(n^2+n\right)+\left(3n+3\right)\)
\(A=n\left(n+1\right)+3\left(n+1\right)\)
\(A=\left(n+1\right)\left(n+3\right)\)
Vì A là tích của hai số chẵn hoặc hai số lẻ liên tiếp
Vậy A không phải là số chính phương
(n+1)2 <A<(n+2)2
Do giữa 2 số a2 và (a+1)2 không có số chính phương nào
Nên A không phải số chính phương
Ta có :
\(A=n^5-5n^3+4n=n\left(n+1\right)=n\left(n-1\right)\left(n-2\right)\left(n+1\right)\left(n+2\right)\)
chia hết cho \(2,3,4,5.\)
b ) Cần chứng minh
\(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1,n\in N\)*
là một số chính phương .
Ta có : \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)
Đặt : \(n^2+3n=y\) thì
\(A=y\left(y+2\right)+1=y^2+2y+1\left(y+1\right)^2\)
\(\Rightarrow A=\left(n^2+3n+1\right)^2,n\in N\)*