Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=3^1+3^2+3^3+.....+3^{100}\) \(=\left(3^1+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(=120+3^5.\left(3^1+3^2+3^3+3^4\right)+....+3^{97}.\left(3^1+3^2+3^3+3^4\right)\)
\(=1.120+3^5.120+...+3^{97}.120\)
\(=\left(1+3^5+...+3^{97}\right).120\)
\(\Rightarrow S⋮120\)
Vậy ........
\(A=4+4^2+4^3+...+4^{23}+4^{24}\)
\(=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{23}+4^{24}\right)\)
\(=20+4^3.\left(4+4^2\right)+....+4^{23}.\left(4+4^2\right)\)
\(=1.20+4^3.20+....+4^{23}.20\)
\(=\left(1+4^3+...+4^{23}\right).20\)
\(\Rightarrow A⋮20\)
-------------------------------------------------------------------------
\(A=4+4^2+4^3+....+4^{23}+4^{24}\)
\(=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+....+\left(4^{22}+4^{23}+4^{24}\right)\)
\(=84+4^4.\left(4+4^2+4^3\right)+.....+4^{22}.\left(4+4^2+4^3\right)\)
\(=1.84+4^4.84+....+4^{22}.84\)
\(=\left(1+4^4+...+4^{22}\right).84\)
\(\Rightarrow A⋮84⋮21\)
---------------------------------------------------------------------------
\(A=4+4^2+4^3+......+4^{23}+4^{24}\)\(=\left(4+4^2+4^3+4^4+4^5+4^6\right)+\left(4^7+4^8+4^9+4^{10}+4^{11}+4^{12}\right)+...+\left(4^{19}+4^{20}+4^{21}+4^{22}+4^{23}+4^{24}\right)\)
\(=5460+4^7.\left(4+4^2+4^3+4^4+4^5+4^6\right)+....+4^{19}.\left(4+4^2+4^3+4^4+4^5+4^6\right)\)
\(=1.5460+4^7.5460+...4^{19}.5460\)
\(=\left(1+4^7+...+4^{19}\right).5460\)
\(\Rightarrow A⋮5460⋮420\)
Bài làm
1 + 1 = 2
2 + 2 = 4
~ Chúc bạn thi tốt ~
# Học tốt #
\(3x+7⋮x-1\)
=>\(3x-3+10⋮x-1\)
=>\(10⋮x-1\)
=>\(x-1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
=>\(x\in\left\{2;0;3;-1;6;-4;11;-9\right\}\)
3x+7chia het cho x-1
suy ra 3x chia het cho x-1và 7chia het cho x-1
suy ra x-1 thuộc ước cua 7
ước của 7 là 1 và 7
Vậy x = 6 hoặc 0
\(A=7+7^2+7^3+7^4+7^5+7^6+7^7+7^8\)
\(A=\left(7+7^3\right)+\left(7^2+7^4\right)+\left(7^5+7^7\right)+\left(7^6+7^8\right)\)
\(A=7\cdot\left(7+7^2\right)+7^2\cdot\left(1+7^2\right)+7^5\cdot\left(1+7^2\right)+7^6\cdot\left(1+7^2\right)\)
\(A=7\cdot50+7^2\cdot50+7^5\cdot50+7^6\cdot50\)
\(A=50\cdot\left(7+7^2+7^5+7^6\right)\)
\(A=5\cdot10\cdot\left(7+7^2+7^5+7^6\right)\)
Ta có: 5 ⋮ 5
⇒ \(A=5\cdot10\cdot\left(7+7^2+7^5+7^6\right)\) ⋮ 5 (đpcm)
A = 7 + 72 + 73 + 74 + 75 + 76 + 77 + 78
A = (7 + 73) + (72+ 74) + (75 + 77) + (76 + 78)
A = 7.(1 + 72) + 72.(1 + 72) + 75.(1 + 72) + 76.(1 + 72)
A = 7.( 1 + 49) + 72.( 1 + 49) + 75.(1 + 49) + 76. (1 + 49)
A = 7.50 + 72.50 + 75.50 + 76.50
A = 50.(7 + 72 + 75 + 76)
Vì 50 ⋮ 5 nên A = 50.(7 + 72 + 76) ⋮ 5 đpcm
Ta có 2n + 5 = 2n -1 + 6
2n+5 chia hết cho 2n-1 <=> 2n-1+6 chia hết 2n-1
Mà 2n-1 chia hết 2n-1
=> Để 2n-1+6 chia hết 2n-1 thì 6 chia hết 2n-1
=> 2n-1 thuôc Ư(6) = {1,2,3,6}
TH1: 2n-1 =1 => n=1
TH2: 2n-1 = 2 => n= 3:2 không là số tự nhiên (loại)
TH3: 2n-1 = 3 => n=2
TH4: 2n-1 = 6 => n= 7:2 không là số tự nhiên (loại)
Vậy n có 2 giá trị là 1 và 2
Ta có 2n + 5 = 2n -1 + 6
2n+5 chia hết cho 2n-1 <=> 2n-1+6 chia hết 2n-1
Mà 2n-1 chia hết 2n-1
=> Để 2n-1+6 chia hết 2n-1 thì 6 chia hết 2n-1
=> 2n-1 thuôc Ư(6) = {1,2,3,6}
TH1: 2n-1 =1 => n=1
TH2: 2n-1 = 2 => n= 3:2 không là số tự nhiên (loại)
TH3: 2n-1 = 3 => n=2
TH4: 2n-1 = 6 => n= 7:2 không là số tự nhiên (loại)
Vậy n có 2 giá trị là 1 và 2
Ta có: 2^2007 chia hết cho 2
Mà 7 không chia hết cho 2
Suy ra: 2^2007+7 không chia hết cho 2
dễ như ăn kẹo. 7 chia hết cho 2 hem