Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3.\left(3^4\right)^{10}+2\)
Do 34 có tận cùng là 1 nên A có tận cùng là 5 nên chia hết cho 5
\(B=2.\left(2^4\right)^n+3\)
Do 24 có tận chùng là 6 nên (24)n có tận cùng là 6 => 2.(24)n có tận cùng là 2 => B có tận cùng là 5 nên chia hết cho 5
Trường hợp còn lại là tương tự
a)
Chia ra từng nhóm, mỗi nhóm gồm 4 số, 2 dấu + và 2 dấu - liên tiếp nhau.
(+1+2-3-4)=-4
(+5+6-7-8)=-4
(+9+10-11-12)=-4
...
(+97+98-99-100)=-4
Vậy cho tới số 100, chia được số nhóm là:
100:4=25 nhóm như vậy,
Suy ra, tổng từ +1 đến -100 là:
25.(-4)=-100
Phần còn lại bạn ghi không rỏ nên không biết cộng đến số bao nhiêu?
Theo như trên, thì
S=(-100)+101+102=103
Đáp số:
S=103
b)
Ta thấy : 3 - 1= 2
5 - 3 = 2
7 - 5 = 2
......
99 - 97=2. Như vậy đây là dãy số cách đều, mỗi số hạng cách số liền kề hai đơn vị . Số số hạng là:( 99 - 1 ) : 2 + 1 = 50 ( số hạng).
Ta sắp xếp thành các cặp số ta có số cặp số là:
50:2=25( cặp số )
A=( 1 - 3 )+ ( 5 - 7) + ( 9 - 11) + .....+ ( 97 - 99) +101
= (- 2) + (- 2 )+ (- 2 )+ ....+ (- 2 )+ 101
= - 2 x 2 5 +101
= - 50+101
= 51
1+2+22+..........+22009+22010
=(1+2+22)+.........+(22007+22008+22009)+22010
=7+..........+22007.(1+2+22)+22010
=7+..........+22007.7+22010
=>A chia 7 dư 22010
Ta có:23=8 đồng dư với 1(mod 7)
=>(23)670=22010 đồng dư với 1670(mod 7)
=>22010 đồng dư với 1(mod 7)
=>22010 chia 7 dư 1
=>A chia 7 dư 1
A = ( 1+ 5 +5 ^2) + ( 5^3 + 5^4 +5 ^5) +...+(5^97+5^98 +5^99) đều chia hết cho 31 .
Hồng Lộc , ờ , CẢM ƠN BAN NHIỀU LẮM NHÉ vì câu trả lời không đầu đuôi , không phân tích , không chứng minh của bạn !!!!!!!!!!
Ta có: \(A=1+5+5^2+...+5^{2019}\)
\(=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{2017}+5^{2018}+5^{2019}\right)\)
\(=31+5^3\cdot31+...+5^{2017}\cdot31\)
\(=31\left(1+5^3+...+5^{2017}\right)\)
\(=-31\cdot\left(1+5^3+...+5^{2017}\right)\cdot\left(-1\right)⋮-31\)(đpcm)