K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2019

Đặt \(\left(10n+9;15n+14\right)=d\)

\(\Rightarrow\hept{\begin{cases}10n+9⋮d\\15n+14⋮d\end{cases}\Rightarrow\hept{\begin{cases}3.\left(10n+9\right)⋮d\\2.\left(15n+14\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}30n+27⋮d\\30n+28⋮d\end{cases}}}\)

\(\Rightarrow\left(30n+28\right)-\left(30n+27\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Rightarrow\frac{10n+9}{15n+14}\)là phân số tối giản với mọi n thuojc N

23 tháng 7 2019

gọi d là ƯC(10n + 9; 15n + 14) 

\(\Rightarrow\hept{\begin{cases}10n+9⋮d\\15n+14⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(10n+9\right)⋮d\\2\left(15n+14\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}30n+27⋮d\\30n+28⋮d\end{cases}}}\)

\(\Rightarrow30n+28-\left(30n+27\right)⋮d\)

\(\Rightarrow30n+28-30n-27⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=\pm1\)

Vậy \(\frac{10n+9}{15n+14}\) là phân số tối giản với mọi n tự nhiên

7 tháng 9 2019

Bây giờ để tìm các giá trị của n để phân số đầu bài cho tối giản thì mình đi tìm các giá trị của n sẽ làm cho phân số đó nguyên

Giả sử \(\frac{n-1}{7n+4}\)nguyên thì \(\frac{7n-7}{7n+4}\)cũng phải nguyên

Do đó \(1-\frac{11}{7n+4}\)nguyên

\(\Rightarrow\)\(\frac{11}{7n+4}\)nguyên\(\Rightarrow7n+4\)là ước của 11\(\Rightarrow7n+4=\left\{-11;-1;1;11\right\}\)

Từ đây ta chọn ra \(n=\left\{1\right\}\)

Vậy n=1 thì \(\frac{n-1}{7n+4}\)là số nguyên

Như đã nói ở trên các giá trị tự nhiên của n thỏa mãn đề bài là các số tự nhiên khác 1

P/s Cách giải trên mình không biết có đúng không vì chúng chỉ là suy ra chớ không phải tương đương, nên có thể sẽ còn thiếu giá trị

13 tháng 6 2016

Gọi U(2m+9 ; 14m+62) = d

thì: 7*(2m+9) - (14m+62) chia hết cho d

=> 1 chia hết cho d.

Vậy d = 1

Hay số hữu tỷ x tối giản. ĐPCM.

10 tháng 9 2017

tk mk nha

2 tháng 11 2020

cho bạn rùi đó

21 tháng 6 2019

Bài 1:

a) \(x=\frac{a+1}{a+9}=\frac{a+9-8}{a+9}=\frac{a+9}{a+9}-\frac{8}{a+9}=1-\frac{8}{a+9}\)

Để \(x\in Z\)thì \(a+9\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)

Vậy \(a\in\left\{-17;-13;-11;-10;-8;-7;-5;-1\right\}\)

b) \(x=\frac{a-1}{a+4}=\frac{a+4-5}{a+4}=\frac{a+4}{a+4}-\frac{5}{a+4}=1-\frac{5}{a+4}\)

Để \(x\in Z\)thì \(a+4\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

Vậy \(a\in\left\{-9;-5;-3;1\right\}\)

Bài 2:

a) \(t=\frac{3x-8}{x-5}=\frac{3x-15}{x-5}+\frac{7}{x-5}=\frac{3\left(x-5\right)}{x-5}+\frac{7}{x-5}=3+\frac{7}{x-5}\)

Để \(t\in Z\)thì \(x-5\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Vậy \(x\in\left\{-2;4;6;12\right\}\)

b)\(q=\frac{2x+1}{x-3}=\frac{2x-6}{x-3}+\frac{7}{x-3}=\frac{2\left(x-3\right)}{x-3}+\frac{7}{\left(x-3\right)}=2+\frac{7}{x-3}\)

Để \(q\in Z\)thì \(x-3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Vậy \(x\in\left\{-4;2;4;10\right\}\)

c)\(p=\frac{3x-2}{x+3}=\frac{3x+9}{x+3}-\frac{11}{x+3}=\frac{3\left(x+3\right)}{x+3}-\frac{11}{x+3}=3-\frac{11}{x+3}\)

Để \(p\in Z\)thì \(x+3\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)

Vậy \(x\in\left\{-14;-4;-2;8\right\}\)

Bài 3:

Gọi \(d\inƯC\left(2m+9;14m+62\right)\)

\(\Rightarrow\hept{\begin{cases}\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}7\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\left(14m+63\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)

\(\Rightarrow\left[\left(14m+63\right)-\left(14m+62\right)\right]⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯC\left(2m+9;14m+62\right)=1\)

Vậy \(x=\frac{2m+9}{14m+62}\)là p/s tối giản

12 tháng 2 2019

Gọi d =ƯCLN(2m+9; 14m+62)

Vậy 2 m + 9 ⋮ d ⇒ 7 ( 2 m + 9 ) ⋮ d ⇔ 14 m + 63 ⋮ d 14 m + 62 ⋮ d ⇒ 14 m + 63 − ( 14 m + 62 ) ⋮ d ⇔ 1 ⋮ d ⇔ d = 1

Vậy ta được đpcm