Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình sẽ tách ra làm từng ý, bạn nhớ k cho mình nhé!
a) Gọi d là ƯCLN ( 2n + 3; 4n + 1 )
Ta có: 2n + 3 chia hết cho d
=> 2 ( 2n + 3 ) chia hết cho d
=> 4n + 6 chia hết cho d
Mà: 4n + 1 chia hết cho d
=> ( 4n + 6 ) - ( 4n + 1 ) chia hết cho d
=> 5 chia hết cho d
=> d thuộc Ư ( 5 )
Giả sử phân số không tối giản:
=> 2n + 3 chia hết cho 5
=> 2n + 3 + 5 chia hết cho 5
=> 2n + 8 chia hết cho 5
=> 2 ( n + 4 ) chia hết cho 5
Vì ƯCLN ( 2; 5 ) = 1
=> n + 4 chia hết cho 5
=> n + 4 = 5k ( k thuộc N* )
=> n = 5k - 4
Vậy với n khác 5k - 4 ( k thuộc N* ) thì phân số bài cho sẽ tối giản.
b) Gọi d = ƯCLN ( 3n + 2; 7n + 1 )
Ta có: 3n + 2 chia hết cho d => 7 ( 3n + 2 ) chia hết cho d => 21n + 14 chia hết cho d ( 1 )
7n + 1 chia hết cho d => 3 ( 7n + 1 ) chia hết cho d => 21n + 3 chia hết cho d ( 2 )
Có: ( 1 ) chia hết cho d; ( 2 ) chia hết cho d
=> ( 1 ) - ( 2 ) chia hết cho d
=> 11 chia hết cho d
=> d thuộc Ư ( 11 )
Giả sử phân số không tối giản:
=> 7n + 1 chia hết cho 11
=> 7n + 1+ 55 chia hết cho 11
=> 7n + 56 chia hết cho 11
=> 7 ( n + 8 ) chia hết cho 11
Vì ƯCLN ( 7; 11 ) = 1
=> n + 8 chia hết cho 11
=> n + 8 = 11k ( k thuộc N* )
=> n = 11k - 8
Vậy với n khác 11k - 8 ( k thuộc N* ) thì phân số bài cho sẽ tối giản.
Mình làm cho bạn 2 câu, câu còn lại tương tự, bạn tự làm ha! ^v^
umk đây này
Phân số đã cho có dạng: a/2+a+n với a=1,2,3,...,2004.
UCLN(a;2+a+n)=1 do đó a;2+a+n nguyên tố cùng nhau. Do vậy 2+n là số nguyên tố với n nhỏ nhất
Do đó 2+n=2003 (Vì 2003 là số nguyên tố)
Vậy n=2001
Đặt \(\left(10n+9;15n+14\right)=d\)
\(\Rightarrow\hept{\begin{cases}10n+9⋮d\\15n+14⋮d\end{cases}\Rightarrow\hept{\begin{cases}3.\left(10n+9\right)⋮d\\2.\left(15n+14\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}30n+27⋮d\\30n+28⋮d\end{cases}}}\)
\(\Rightarrow\left(30n+28\right)-\left(30n+27\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow\frac{10n+9}{15n+14}\)là phân số tối giản với mọi n thuojc N
gọi d là ƯC(10n + 9; 15n + 14)
\(\Rightarrow\hept{\begin{cases}10n+9⋮d\\15n+14⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(10n+9\right)⋮d\\2\left(15n+14\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}30n+27⋮d\\30n+28⋮d\end{cases}}}\)
\(\Rightarrow30n+28-\left(30n+27\right)⋮d\)
\(\Rightarrow30n+28-30n-27⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=\pm1\)
Vậy \(\frac{10n+9}{15n+14}\) là phân số tối giản với mọi n tự nhiên
Bây giờ để tìm các giá trị của n để phân số đầu bài cho tối giản thì mình đi tìm các giá trị của n sẽ làm cho phân số đó nguyên
Giả sử \(\frac{n-1}{7n+4}\)nguyên thì \(\frac{7n-7}{7n+4}\)cũng phải nguyên
Do đó \(1-\frac{11}{7n+4}\)nguyên
\(\Rightarrow\)\(\frac{11}{7n+4}\)nguyên\(\Rightarrow7n+4\)là ước của 11\(\Rightarrow7n+4=\left\{-11;-1;1;11\right\}\)
Từ đây ta chọn ra \(n=\left\{1\right\}\)
Vậy n=1 thì \(\frac{n-1}{7n+4}\)là số nguyên
Như đã nói ở trên các giá trị tự nhiên của n thỏa mãn đề bài là các số tự nhiên khác 1
P/s Cách giải trên mình không biết có đúng không vì chúng chỉ là suy ra chớ không phải tương đương, nên có thể sẽ còn thiếu giá trị