K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4

chịu

 

23 tháng 10 2016

Xét n tích \(x_1x_2,x_2x_3,...,x_nx_1\), mỗi tích có giá trị bằng 1 hoặc -1 mà tổng của chúng bằng 0 nên số tích có giá trị 1 bằng số tích có giá trị -1, và đều bằng \(\frac{n}{2}\). Vậy n chia hết cho 2.

Bây giờ ta sẽ chứng minh rằng số tích có giá trị -1 cũng là số chẵn. Thật vậy, xét

\(A=\left(x_1x_2\right)\left(x_2x_3\right)...\left(x_{n-1}x_n\right)\left(x_nx_1\right).\)

Ta thấy \(A=x_1^2x_2^2...x_n^2\) nên \(A=1>0\) chứng tỏ số tích có giá trị -1 cũng là số chẵn, tức là \(\frac{n}{2}\) là số chẵn, do đó n chia hết cho 4.

23 tháng 10 2016

thanks

5 tháng 7 2019

Câu hỏi của Thi Bùi - Toán lớp 7 - Học toán với OnlineMath

Bạn tham khảo link trên nhé!

10 tháng 8 2018

Vì n số x1,x2,x3,... ,xn mỗi số bằng 1 hoặc -1.

=> n tích x1x2; x2x3; x3x4; ...;xnx1 mỗi tích bằng 1 hoặc -1

Mà tổng n h trên bằng 0

=> số tích=1 sẽ bằng số tích= -1 (=n:2)

=> n chia hết cho 2

Ta thấy: (x1x2) (x2x3) (x3x4) ...(xnx1) = (x1)2. (x2)2 .(x3)2... (xn)2 =1 >0

=> số tích bằng -1 phải là số chẵn 

=> n:2 là số chẵn => nchia hết cho 4

13 tháng 2 2018

Bài 1 : 

Ta có :

\(\left(x-1\right)^6=\left(x-1\right)^8\)

\(\Leftrightarrow\)\(x-1=\left(x-1\right)^2\)

\(\Leftrightarrow\)\(\left(x-1\right)-\left(x-1\right)^2=0\)

\(\Leftrightarrow\)\(\left(x-1\right)\left(1-x+1\right)=0\)

\(\Leftrightarrow\)\(\left(x-1\right)\left(2-x\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\2-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)

Vậy \(x=1\) hoặc \(x=2\)