Chứng minh rằng (2n+4) (3n+5) chia hết cho 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3n+4+3n+2 + 2n+3 + 2n+1
= 3n.( 34 + 32) + 2n.( 23+2)
= 3n.90 + 2n.10
= 10.( 3n.9+2n.5)
vì 10 ⋮ 5 ⇔ 10.( 3n.9 + 2n.5) ⋮ 5 ⇔ 3n+4+3n+2+2n+2+2n+1 ⋮ 5(đpcm)
Bài 5:
b: Ta có: \(n+6⋮n+2\)
\(\Leftrightarrow n+2\in\left\{2;4\right\}\)
hay \(n\in\left\{0;2\right\}\)
c: Ta có: \(3n+1⋮n-2\)
\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)
hay \(n\in\left\{1;3;9\right\}\)
(3n-5)(2n+1)+7(n-1)=6n2-7n-5+7n-7
=6n2-12
=3(2n-4)
=>(3n-5)(2n+1)+7(n-1) chia hết cho 3, với mọi n
(n-4)(5n+3)-(n+1)(5n-2)+4=5n2-17n-12-(5n2+3n-2)
=5n2-17n-12-5n2-3n+2
=-20n-10
=5(-4n-2)
=>(n-4)(5n+3)-(n+1)(5n-2)+4 chia hết cho 5, với mọi n
\(\Leftrightarrow\left(3n+7-2n-3\right)\left(3n+7+2n+3\right)\)
\(=\left(5n+10\right)\left(n+4\right)⋮5\)
Đặt \(A=11\cdot5^{2n}+2^{3n+2}+2^{3n+1}\)
\(A=11\cdot25^n+8^n\cdot4+8^n\cdot2\)
\(A=17\cdot25^2-6\left(25^n-8^n\right)\)
\(A=17\cdot25^n-6\left(25-8\right)\left(25^{n-1}+25^{n-2}\cdot8+..........+8^{n-2}\cdot25+8^{n-1}\right)\)\(A=17\cdot25^n-17\cdot6\cdot\left(25^{n-1}+25^{n-2}\cdot8+..........+8^{n-2}\cdot25+8^{n-1}\right)\)\(\Rightarrow A⋮17\)
Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3
=> ĐPCM;
ta có \(\left(2n+4\right)\left(3n+5\right)=2\left(n+2\right)\left(3n+5\right)⋮2\)