K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2017

đánh lên lại tim đi,bai này lm nhiều quá đến ngán rồi

10 tháng 10 2017

là sao

Câu 20: Tam giác ABC vuông tại B suy ra:   A.  AC2  = AB2 + BC2 ­                                   B.  AC2  = AB2 - BC2   C.  BC2  = AB2 + AC2                                    D.  AB2  = BC2 + AC2Câu 21: Tam giác ABC có BC = 5cm; AC = 12cm; AB = 13cm. Tam giác ABC vuông tại đâu?   A.  Tại  B                                                      B.  Tại C   C.  Tại A                                                       D.  Không phải là tam giác vuôngCâu 22: Cho ABC có  = 900 ;...
Đọc tiếp

Câu 20: Tam giác ABC vuông tại B suy ra:

   A.  AC2  = AB+ BC2 ­                                   B.  AC2  = AB- BC2

   C.  BC2  = AB+ AC2                                    D.  AB2  = BC+ AC2

Câu 21: Tam giác ABC có BC = 5cm; AC = 12cm; AB = 13cm. Tam giác ABC vuông tại đâu?

   A.  Tại  B                                                      B.  Tại C

   C.  Tại A                                                       D.  Không phải là tam giác vuông

Câu 22: Cho ABC có  = 900 ; AB = 4,5 cm ; BC = 7,5 cm. Độ dài cạnh AC là:

   A.  6,5 cm                    B.  5,5 cm                     C.  6 cm                       D.   6,2 cm

Câu 23: Tam giác nào là tam giác vuông trong các tam giác có độ dài các cạnh là:

A.  3cm, 4dm, 5cm.         B.  5cm, 14cm, 12cm. 

C.  5cm, 5cm, 8cm.         D.  9cm, 15cm, 12cm.

Câu 24: Cho ABC có  AB = AC và  = 600, khi đó tam giác ABC là:

   A.  Tam giác vuông                                       B.   Tam giác cân

   C.  Tam giác đều                                           D.  Tam giác vuông cân

Câu 25: Nếu A là góc ở đáy của một tam giác cân thì:

A.  ∠A ≤ 900                                 B. ∠A > 900                            C. ∠A < 900                       D. ∠A = 900

Ai giúp mình với ạ!

1
13 tháng 3 2022

Câu 20: Tam giác ABC vuông tại B suy ra:

   A.  AC2  = AB+ BC2 ­                                   B.  AC2  = AB- BC2

   C.  BC2  = AB+ AC2                                    D.  AB2  = BC+ AC2

Câu 21: Tam giác ABC có BC = 5cm; AC = 12cm; AB = 13cm. Tam giác ABC vuông tại đâu?

   A.  Tại  B                                                      B.  Tại C

   C.  Tại A                                                       D.  Không phải là tam giác vuông

Câu 22: Cho ABC có  = 900 ; AB = 4,5 cm ; BC = 7,5 cm. Độ dài cạnh AC là:

   A.  6,5 cm                    B.  5,5 cm                     C.  6 cm                       D.   6,2 cm

Câu 23: Tam giác nào là tam giác vuông trong các tam giác có độ dài các cạnh là:

A.  3cm, 4dm, 5cm.         B.  5cm, 14cm, 12cm. 

C.  5cm, 5cm, 8cm.         D.  9cm, 15cm, 12cm.

Câu 24: Cho ABC có  AB = AC và  = 600, khi đó tam giác ABC là:

   A.  Tam giác vuông                                       B.   Tam giác cân

   C.  Tam giác đều                                           D.  Tam giác vuông cân

Câu 25: Nếu A là góc ở đáy của một tam giác cân thì:

A.  ∠A ≤ 900                                 B. ∠A > 900                            C. ∠A < 90                      D. ∠A = 900

8 tháng 12 2021

Tham Khảo e nhá chj ngu ném ko bik làm☹

https://hoc24.vn/cau-hoi/cho-tam-giac-abc-m-la-trung-diem-bc-chung-minh-ab2-ac2-2am2-bc22.249563555147

10 tháng 12 2021

Kẻ AH vuông góc BC.

Xét tam giác AHM vuông tại H (^AHM = 900) có:

AM2 = AH2 + HM2 (định lý Pytago).

Xét tam giác AHB vuông tại H (^AHB = 900) có:

AB2 = AH2 + BH2 (định lý Pytago).

Xét tam giác AHC vuông tại H (^AHC = 900) có:

AC2 = AH2 + CH2 (định lý Pytago).

Ta có: BH = BM - HM.

          CH = CM + HM. 

Vì M là trung điểm của BC (gt) => BM = CM; BM = \(\dfrac{BC}{2}\) => BM2 = \(\dfrac{BC^2}{4}\).

Ta có: AB2 + AC2 = AH2 + BH2 + AH2 + CH2.

          AB2 + AC2 = AH2 + AH+ BH+ CH2.

                            = 2AH2 + (BM - HM)2 + (CM + HM)2.

                            = 2AH2 + BM2 - 2BM.HM + HM2 + CM2 + 2CM.HM + HM2.

                            = 2AH2 + BM2 - 2BM.HM + HM2 + BM2 + 2BM.HM + HM2.

                            = 2AH+ 2HM2 + 2BM2.

                            = 2(AH2 + HM2) + 2\(\dfrac{BC^2}{4}\).

          AB2 + AC2 = 2AM2 + \(\dfrac{BC^2}{2}\) (đpcm). 

14 tháng 3 2021

undefined A B H C

27 tháng 11 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

Kẻ đường cao BH

Xét tam giác ABH vuông tại H có ∠(BAC) =  60 0

BH = AB.sin A = AB.sin  60 0  = (AB 3 )/2

AH = AB.cos A = AB.cos 60 0  = AB/2

Xét tam giác BHC vuông tại H có:

B C 2 = B H 2 + H C 2 = B H 2 + A C - A H 2

= B H 2 + A C 2 - 2 A C . A H + A H 2

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vậy được điều phải chứng minh.

16 tháng 12 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Kẻ đường cao BH của tam giác ABC thì H nằm trên tia AC (để  ∠ (BAC) =  60 °  là góc nhọn), do đó H C 2 = A C - A H 2 (xem h.bs.8a, 8b)

Công thức Py-ta-go cho ta

 

B C 2 = B H 2 + H C 2 = B H 2 + A C - A H 2 = B H 2 + A C 2 + A H 2 - 2 A C . A H = A B 2 + A C 2 - 2 A C . A H

 

Do  ∠ (BAC) = 60 °  nên AH = AB.cos 60 °  = AB/2, suy ra  B C 2 = A B 2 + A C 2 - A B . A C

21 tháng 11 2018

a, Sử dụng định lí Pytago cho các tam giác vuông HAB và HAC để có đpcm

b, 1. Chứng minh tương tự câu a)

2. Sử dụng định lí Pytago cho tam giác vuông AHM

26 tháng 2 2022

A