Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tg là tam giác nha !
a )
Ta có : gócA1 + gócBAC = gócDAC ( AB nằm giữa AD và AC )
=> gócA1 = gócDAC - gócBAC = 90o - gócBAC ( 1 )
Ta có : gócA2 + gócBAC = gócBAE ( AC nằm giữa AB và AE )
=> gócA2 = gócBAE - gócBAC = 90o - gócBAC ( 2 )
Từ ( 1 ) và ( 2 ) suy ra : gócA1 = gócA2 .
Xét tgABD và tgACE , có :
AD = AC ( gt )
AB = AE ( gt )
gócA1 = gócA2 ( cmt )
Do đó : tgABD = tgACE ( c - g - c )
=> BD = CE ( 2 cạnh tương ứng ) .
b ) Xét tgABM và tgNCM , có :
gócM1 = gócM2
BM = CM ( AM là trung tuyến)
AM = NM ( gt )
Do đó : tgABM = tgNCM ( c - g - c )
=> gócC1 = gócB1 ( 2 góc tương ứng )
Mà : gócB1 = gócADC + gócA1 ( góc ngoài của tg bằng tổng 2 góc trong không kề với nó )
Do đó : gócC1 = gócADC + gócA1
Ta có : gócC2 + gócDAC + gócADC = 180o ( tổng 3 góc trong tg )
=> gócC2 = 180o - gócDAC - gócADC = 180o - 90o - gócADC = 90o - gócADC
Ta có : gócACN = gócC1 + gócC2 ( DC nằm giữa AC và NC )
=> gócACN = ( gócADC + gócA1 ) + ( 90o - gócADC ) = gócADC + gócA1 + 90o - gócADC = 90o + gócA1 ( 3 )
Ta có : gócDAE = gócBAE + gócA1 ( AB nằm giữa AD và AE )
=> gócDAE = 90o + gócA1 ( 4 )
Từ ( 3 ) và ( 4 ) suy ra : gócACN = gócDAE ( 5 )
Ta có : tgABM = tgNCM ( cmt )
=> AB = CN ( 2 cạnh tương ứng )
Mà : AB = AE ( gt )
Do đó : CN = AE ( 6 )
Xét tgADE và tgACN , có :
AD = AC ( gt )
AE = CN ( cmt ( 6 ) )
gócACN = gócDAE ( cmt ( 5 ) )
Do đó : tgADE = tgACN ( c - g - c )
c ) Nằm ngoài khả năng của mình rồi !
Học tốt nha !
Bài 2:
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB,ta được:
\(AM\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC, ta được:
\(AN\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
b) Xét tứ giác AMHN có
\(\widehat{NAM}=90^0\)
\(\widehat{ANH}=90^0\)
\(\widehat{AMH}=90^0\)
Do đó: AMHN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Suy ra: AH=MN
Ta có: \(AM\cdot AB+AN\cdot AC\)
\(=AH^2+AH^2\)
\(=2AH^2=2\cdot MN^2\)
a: Xét (O) có
ΔCAB nội tiếp
AB là đường kính
Do đó: ΔCAB vuông tại C
b: Ta có: ΔOAC cân tại O
mà OH là đường trung tuyến
nên OH\(\perp\)AC tại H
=>OD\(\perp\)AC tại H
Xét ΔDAO vuông tại A có AH là đường cao
nên \(OH\cdot OD=OA^2\)
=>\(4\cdot OH\cdot OD=4\cdot OA^2=\left(2\cdot OA\right)^2=BA^2\)
a) Để chứng minh tam giác \(ABC\) vuông, ta cần chứng minh rằng góc \(ACB\) là góc vuông.
Vì \(C\) là một điểm trên đường tròn \((O)\) có đường kính \(AB\), nên ta có \(AC\) là tiếp tuyến của đường tròn tại điểm \(C\). Do đó, góc \(ACB\) là góc nội tiếp tương ứng với góc \(A\).
Vì \(AB\) là đường kính của đường tròn, nên góc \(A\) là góc vuông (\(90^\circ\)). Vì vậy, ta có thể kết luận rằng tam giác \(ABC\) là tam giác vuông.
b) Để chứng minh \(40OH = OD = AB/2\), ta cần chứng minh rằng tam giác \(OHD\) là tam giác đều.
Vì \(H\) là trung điểm của \(AC\), nên ta có \(OH\) là đường trung bình của tam giác \(ABC\). Do tam giác \(ABC\) là tam giác vuông (\(AB\) là đường kính), nên đường trung bình \(OH\) cũng là đường cao của tam giác \(ABC\).
Vì vậy, ta có \(OH\) vuông góc với \(AB\) tại \(D\). Vì \(OH\) là đường cao của tam giác \(ABC\), nên \(OD\) cũng là đường cao của tam giác \(OHD\).
Vì \(OH\) và \(OD\) là hai đường cao của tam giác \(OHD\), nên tam giác \(OHD\) là tam giác đều. Do đó, ta có \(40OH = OD = AB/2\).
c) Để chứng minh \(MB\) là tiếp tuyến của đường tròn \((O)\), ta cần chứng minh rằng góc \(MBO\) là góc vuông.
Vì \(OE\) là đường vuông góc với \(BD\) tại \(E\), nên \(OE\) là đường cao của tam giác \(OBD\). Vì \(OD\) là đường cao của tam giác \(OHD\) (tam giác đều), nên \(OE\) cũng là đường cao của tam giác \(OHD\).
Vì vậy, ta có \(OE\) vuông góc với \(HD\) tại \(D\). Vì \(HD\) là tiếp tuyến của đường tròn \((O)\) tại \(D\), nên góc \(MBO\) là góc nội tiếp tương ứng với góc \(D\).
Vì \(OD = AB/2\) (theo phần b), nên góc \(D\) là góc vuông (\(90^\circ\)). Vì vậy, ta có thể kết luận rằng \(MB\) là tiếp tuyến của đường tròn \((O)\).
a, Sử dụng định lí Pytago cho các tam giác vuông HAB và HAC để có đpcm
b, 1. Chứng minh tương tự câu a)
2. Sử dụng định lí Pytago cho tam giác vuông AHM