K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Kẻ đường cao BH của tam giác ABC thì H nằm trên tia AC (để  ∠ (BAC) =  60 °  là góc nhọn), do đó H C 2 = A C - A H 2 (xem h.bs.8a, 8b)

Công thức Py-ta-go cho ta

 

B C 2 = B H 2 + H C 2 = B H 2 + A C - A H 2 = B H 2 + A C 2 + A H 2 - 2 A C . A H = A B 2 + A C 2 - 2 A C . A H

 

Do  ∠ (BAC) = 60 °  nên AH = AB.cos 60 °  = AB/2, suy ra  B C 2 = A B 2 + A C 2 - A B . A C

29 tháng 8 2015

Kẻ CE vuông góc với AB, ta có ngay tam giác ACE vuông có một góc nhọn 60. Suy ra \(AE=\frac{1}{2}AC=\frac{b}{2},CE=\frac{\sqrt{3}}{2}b\). Xét tam giác vuông EBC có '\(EB=c+\frac{b}{2},EC=\frac{\sqrt{3}}{2}b\to a^2=BC^2=BE^2+CE^2=\left(c+\frac{b}{2}\right)^2+\left(\frac{\sqrt{3}}{2}b\right)^2=c^2+bc+b^2\)

đáp án 

=c2 + bc + b2

hok tót

Bài 2: 

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB,ta được:

\(AM\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC, ta được:

\(AN\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

b) Xét tứ giác AMHN có 

\(\widehat{NAM}=90^0\)

\(\widehat{ANH}=90^0\)

\(\widehat{AMH}=90^0\)

Do đó: AMHN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

Suy ra: AH=MN

Ta có: \(AM\cdot AB+AN\cdot AC\)

\(=AH^2+AH^2\)

\(=2AH^2=2\cdot MN^2\)

15 tháng 7 2023

câu c,d bài 2

20 tháng 6 2016

bạn ơi giúp mình với C/M: (ax^2 - bx^2)^4 + (2ab+bx^2)^4 + (2ab+a^2)^4 = 2(a^2+ab+b^2)

26 tháng 5 2017

D A C B b c a b/2

Ta có: \(\widehat{CAB}=120^o\Rightarrow\widehat{CAD}=60^o\)

\(\Rightarrow\Delta DAC\) là nửa tam giác đều.

\(\Rightarrow AD=\frac{AC}{2}=\frac{b}{2}\)

Xét \(\Delta CDB\) vuông tại D có:

\(CB^2=CD^2+DB^2=\left(AC^2-AD^2\right)+\left(AD+AB\right)^2\)

\(\Leftrightarrow CB^2=AC^2-AD^2+AD^2+2AD.AB+AB^2=AC^2+2AB.\frac{AC}{2}+AB^2\)

\(\Leftrightarrow a^2=b^2+c^2+bc\)

27 tháng 7 2017

Ta có:

\(a< b+c\)

\(\Leftrightarrow2a< a+b+c=2\)

\(\Leftrightarrow a< 1\)

Tương tự ta cũng có:

\(\hept{\begin{cases}b< 1\\c< 1\end{cases}}\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)>0\)

\(\Leftrightarrow-abc+ab+bc+ca-a-b-c+1>0\)

\(\Leftrightarrow abc< \left(ab+bc+ca\right)-1\)

\(\Leftrightarrow2abc< 2\left(ab+bc+ca\right)-2\)

\(\Leftrightarrow a^2+b^2+c^2+2abc< a^2+b^2+c^2+2\left(ab+bc+ca\right)-2\)

\(\Leftrightarrow a^2+b^2+c^2+2abc< \left(a+b+c\right)^2+2=4-2=2\)