K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

Kẻ đường cao BH

Xét tam giác ABH vuông tại H có ∠(BAC) =  60 0

BH = AB.sin A = AB.sin  60 0  = (AB 3 )/2

AH = AB.cos A = AB.cos 60 0  = AB/2

Xét tam giác BHC vuông tại H có:

B C 2 = B H 2 + H C 2 = B H 2 + A C - A H 2

= B H 2 + A C 2 - 2 A C . A H + A H 2

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vậy được điều phải chứng minh.

16 tháng 12 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Kẻ đường cao BH của tam giác ABC thì H nằm trên tia AC (để  ∠ (BAC) =  60 °  là góc nhọn), do đó H C 2 = A C - A H 2 (xem h.bs.8a, 8b)

Công thức Py-ta-go cho ta

 

B C 2 = B H 2 + H C 2 = B H 2 + A C - A H 2 = B H 2 + A C 2 + A H 2 - 2 A C . A H = A B 2 + A C 2 - 2 A C . A H

 

Do  ∠ (BAC) = 60 °  nên AH = AB.cos 60 °  = AB/2, suy ra  B C 2 = A B 2 + A C 2 - A B . A C

NV
5 tháng 10 2019

A B C H

Kẻ \(BH\perp AC\Rightarrow BC^2=BH^2+HC^2=\left(AB^2-AH^2\right)+HC^2\)

\(=AB^2-AH^2+\left(AC-AH\right)^2=AB^2+AC^2-2AC.AH\)

\(\Rightarrow BC^2=AB^2+AC^2-2AC.AB.cos60^0\)

\(\Rightarrow BC^2=AB^2+AC^2-AB.AC\)

13 tháng 12 2021

a: Xét ΔABE và ΔADC có 

\(\widehat{ABE}=\widehat{ADC}\)

\(\widehat{BAE}=\widehat{DAC}\)

Do đó: ΔABE\(\sim\)ΔADC

Suy ra: \(AB\cdot AC=AD\cdot AE\)