mn giúp e bài 9 với 10 ạ😭
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=(9/25 + 16/25) + ( 2/11 + 9/11)+ (10/17 + 7/17)
= 1 + 1 + 1
= 3
Toán này đâu khó!
a)\(5x^2.\left(10x^4-5x^3+2\right)=50x^6-25x^5+10x^2\)
b) \(\left(x^2-5x+3\right).\left(-5x\right)=-5x^3+25x^2-15x\)
c) \(\left(5x-2y\right)\left(x^2-xy+1\right)=5x^3-5x^2y+5x-2x^2y+2xy^2-2y\\ =5x^3-7x^2y+2xy^2+5x-2y\)
d) \(\left(3x-2\right)\left(9x^2+6x-4\right)\\ =27x^3+18x^2-12x-18x^2-12x+8=27x^3+8\)
a) \(5x^2\left(10x^4-5x^3+2\right)=50x^6-25x^5+10x^2\)
b) \(\left(x^2-5x+3\right)\left(-5x\right)=-5x^3+25x^2-15x\)
c) \(\left(5x-2y\right)\left(x^2-xy+1\right)=5x^3-5x^2y+5x-2x^2y+2xy^2-2y=5x^3-7x^2y+2xy^2+5x-2y\)
d) \(\left(3x-2\right)\left(9x^2+6x-4\right)=27x^3+18x^2-12x-18x^2-12x+8=27x^3-24x+8\)
Câu 2: Ta có :\(v=\dfrac{\Delta C}{\Delta t}\)
=> Tốc độ trong thời gian đó là: \(v=\dfrac{0,024-0,022}{10}=0,0002\) mol/l.s.
Vì BC và Cx là 2 tia đối nên \(\widehat{BCA}\) và \(\widehat{ACx}\) là 2 góc kề bù
\(\Rightarrow\widehat{ACB}+\widehat{ACx}=180^o\)
\(40^o+\widehat{ACx}=180^o\)
\(\widehat{ACx}=140^o\)
b) Ta có:\(\widehat{ACB}+\widehat{ABC}+\widehat{BAC}=180^o\) (tổng 3 góc trong 1 tam giác)
\(40^o+\widehat{ABC}+70^o=180^o\)
\(\widehat{ABC}=70^o\)(1)
Vì Oy là phân giác của \(\widehat{ACx}\) nên \(\widehat{xCy}=\dfrac{\widehat{ACx}}{2}=\dfrac{140^o}{2}=70^o\)(2)
Từ (1),(2) => \(\widehat{ABC}=\widehat{xCy}\)
c)Cặp góc đồng vị là \(\widehat{ABC}\) và \(\widehat{xCy}\)
Bài 10
a; Giao của d1 với trục ox là điểm có hoành độ thỏa mãn
\(x\) - 3 = 0 ⇒ \(x\) = 3
Giao của d1 với trục oy là điểm có tung độ thỏa mãn y = 0 - 3 = -3
Giao của d2 với trục ox là điểm có hoành độ thỏa mãn
3 - \(x\) = 0 ⇒ \(x\) = 3
Giao của d2 với trục oy là điểm có tung độ thỏa mãn y = 3 - 0 = 3
Ta có đồ thị d1 và d2 như hình dưới
b; Giao của d1 và d2 là điểm có phương trình hoành độ thỏa mãn
\(x\) - 3 = 3 - \(x\)
2\(x\) = 6
\(x\) = 6 : 2
\(x\) = 3; ⇒ y = 3- 3 =0
Vậy giao của d1 và d2 là A(3;0)
Bài 9:
Giao của d1 với trục ox là điểm có hoành độ thỏa mãn
2\(x\) - 3 = 0 ⇒ \(x\) = \(\dfrac{3}{2}\)
Giao của d1 với trục oy là điểm có tung độ thỏa mãn
y = 2.0 - 3 = - 3
Giao của d2 với trục ox là điểm có hoành độ thỏa mãn
-3 - \(x\) = 0 ⇒ \(x\) = 0
Giao của d2 với trục oy là điểm có tung độ thỏa mãn
y = -3 - 0 = -3
Ta có đồ thị như hình dưới đây
Giao của d1 và d2 là điểm có hoành độ thỏa mãn phương trình
2\(x\) - 3 = -3 - \(x\)
2\(x\) + \(x\) = 0
3\(x\) =0
\(x\) = 0
⇒ y = -3 - 0
y = - 3
Vậy giao của d1 và d2 là điểm B(0; -3)