K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2023

 Xét parabol \(\left(C_m\right):y=-2x^2-\left(2m-1\right)x+6-3m\), ta có \(\Delta=\left[-\left(2m-1\right)\right]^2-4\left(-2\right)\left(6+3m\right)=4m^2+20m+49\)

  Gọi \(I_m\) là đỉnh của \(\left(C_m\right)\) thì \(I_m\left(\dfrac{-2m+1}{4};\dfrac{4m^2+20m+49}{8}\right)\)

  Để hàm số đã cho nghịch biến trong khoảng \(\left(-2;+\infty\right)\) thì \(\dfrac{-2m+1}{4}=-2\Leftrightarrow m=\dfrac{9}{2}\)

 

25 tháng 12 2023

Tao đéo biết thằng Nguyễn Huy Hung nha ☹

NV
30 tháng 3 2023

a.

Hàm số nghịch biến khi \(x< 0\Rightarrow-3m-2>0\Rightarrow m< -\dfrac{2}{3}\)

b.

Do \(a=m^2-2m+3=\left(m-1\right)^2+2>0;\forall m\)

\(\Rightarrow\) Hàm đồng biến khi \(x>0\) và nghịch biến khi \(x< 0\)

c.

Hàm đồng biến khi \(x>0\Rightarrow2m+3>0\)

\(\Rightarrow m>-\dfrac{3}{2}\)

26 tháng 9 2018

Đáp án D

Có y ' = m m + 1 − 2 m + 2 x + m 2 = m 2 − m − 2 x + m 2 .

Hàm số xác định trên

− 1 ; + ∞ ⇔ − m ∉ − 1 ; + ∞ ⇔ − m ≤ − 1 ⇔ m ≥ 1

Khi đó hàm số ngịch biến trên

− 1 ; + ∞ ⇔ y ' < 0 ∀ x ∈ − 1 + ∞ ⇔ m 2 − m − 2 < 0 ⇔ m ∈ − 1 ; 2

Vậy m ∈ 1 ; 2 .

NV
29 tháng 7 2021

3.

\(y'=\dfrac{3m-1}{\left(x+3m\right)^2}\)

Hàm nghịch biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}3m-1< 0\\-3m\le6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{1}{3}\\m\ge-2\end{matrix}\right.\)

\(\Rightarrow-2\le m< \dfrac{1}{3}\Rightarrow m=\left\{-2;-1;0\right\}\)

4.

\(y'=\dfrac{3m-2}{\left(x+3m\right)^2}\)

Hàm đồng biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}3m-2>0\\-3m\ge-6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{2}{3}\\m\le2\end{matrix}\right.\)

\(\Rightarrow\dfrac{2}{3}< m\le2\Rightarrow m=\left\{1;2\right\}\)

12 tháng 11 2023

a: TXĐ: D=R\{-1}

\(y'=\dfrac{\left(x+m\right)'\left(x+1\right)-\left(x+1\right)'\left(x+m\right)}{\left(x+1\right)^2}\)

\(=\dfrac{x+1-x-m}{\left(x+1\right)^2}=\dfrac{1-m}{\left(x+1\right)^2}\)

Để hàm số nghịch biến trên từng khoảng xác định thì \(y'< 0\forall x\)

=>\(\dfrac{1-m}{\left(x+1\right)^2}< 0\)

=>1-m<0

=>m>1

b: TXĐ: D=R\{m}

\(y=\dfrac{2x-3m}{x-m}\)

=>\(y'=\dfrac{\left(2x-3m\right)'\left(x-m\right)-\left(2x-3m\right)\left(x-m\right)'}{\left(x-m\right)^2}\)

\(=\dfrac{2\left(x-m\right)-\left(2x-3m\right)}{\left(x-m\right)^2}=\dfrac{2x-2m-2x+3m}{\left(x-m\right)^2}\)

\(=\dfrac{m}{\left(x-m\right)^2}\)

Để hàm số đồng biến trên từng khoảng xác định thì \(y'>0\forall x\)

=>\(\dfrac{m}{\left(x-m\right)^2}>0\)

=>m>0

27 tháng 5 2021

a) Để hàm đồng biến <=> a>0 <=> m-1>0 <=> m>1

Để hàm nghịch biến <=> a<0 <=> m<1

b)Có phải đề như này: \(y=-m^2x+1\)

Nhận xét: \(-m^2\le0\forall m\)

=> Hàm luôn nghịch biến với mọi \(m\ne0\) 

c)Để hàm nghịch biến <=> a<0 <=> 1-3m<0\(\Leftrightarrow m>\dfrac{1}{3}\)

Để hàm đồng biền <=> a>0 \(\Leftrightarrow m< \dfrac{1}{3}\)

27 tháng 5 2021

a/ Hàm số y=(m-1)x+2 đồng biến khi và chỉ khi m-1>0

⇔m>1

nghịch biến khi và chỉ khi m-1<0

⇔m<1

b/Hàm số y=-2mx+1 đồng biến khi và chỉ khi -2m>0

⇔m<0

nghịch biến khi và chỉ khi -2m<0

⇔m>0

c/Hàm số y=(1-3m)x+2m đồng biến khi và chỉ khi 1-3m>0

⇔-3m>-1

⇔m<\(\dfrac{1}{3}\)

nghịch biến khi và chỉ khi 1-3m<0

⇔-3m<-1

⇔m>\(\dfrac{1}{3}\)

1 tháng 10 2018

Đáp án đúng : A

31 tháng 5 2019

Chọn B

Tập xác định của hàm số:

Ta có: .

.

 

nên hàm số nghịch biến trên khoảng .

25 tháng 4 2019

Đáp án D

y = m x − 2 − 2 x + m ⇒ y ' = m 2 − 4 ( − 2 x + m ) 2 y ' < 0 ⇒ − 2 < m < 2

Suy ra, hàm số nghịch biến trên ( − ∞ ; m 2 )  và  ( m 2 ; + ∞ )

⇒ m 2 ≤ 1 2 ⇒ m ≤ 1 ⇒ − 2 < m ≤ 1