Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Hàm số nghịch biến khi \(x< 0\Rightarrow-3m-2>0\Rightarrow m< -\dfrac{2}{3}\)
b.
Do \(a=m^2-2m+3=\left(m-1\right)^2+2>0;\forall m\)
\(\Rightarrow\) Hàm đồng biến khi \(x>0\) và nghịch biến khi \(x< 0\)
c.
Hàm đồng biến khi \(x>0\Rightarrow2m+3>0\)
\(\Rightarrow m>-\dfrac{3}{2}\)
Để hàm số trên là hàm số đồng biến khi \(1-3m>0\Leftrightarrow m< \frac{1}{3}\)
Để hàm số trên là hàm số nghịch biến khi \(1-3m< 0\Leftrightarrow m>\frac{1}{3}\)
Bài 1:
a. Để hàm số đồng biến thì $5>0$ (luôn đúng với mọi $m\in\mathbb{R}$
Vậy hàm số đồng biến với mọi $m\in\mathbb{R}$
b. Để hàm số đồng biến thì:
$-m+3>0\Leftrightarrow m< 3$
2.
Để hàm số trên nghịch biến thì $-4m< 0$
$\Leftrightarrow m>0$
a: Để hàm số đồng biến trên R thì \(m^2-4>0\)
=>\(m^2>4\)
=>\(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\)
b: Để hàm số nghịch biến trên R thì \(m^2-4< 0\)
=>\(m^2< 4\)
=>-2<m<2
a) Hàm số y = (3m - 1)x + 2 với m ≠≠ 1313 đồng biến
⇔ 3m - 1 > 0
⇔ 3m > 1
⇔ m > 1313
Vậy m > 1313 thì hàm số y = (3m - 1)x + 2 đồng biến
b) Hàm số y = (3m - 1)x + 2 với m ≠≠ 1313 nghịch biến
⇔ 3m - 1 < 0
⇔ 3m < 1
⇔ m < 1313
Vậy m < 1313 thì hàm số y = (3m - 1)x + 2 nghịch biến
c) Đồ thị hàm số y = (3m - 1)x + 2 với m ≠≠ 1313 đi qua điểm A(2; 3) nên thay x = 2; y = 3 vào hàm số y = (3m - 1)x + 2 ta được:
3 = (3m - 1).2 + 2 (m ≠≠ 1313)
⇔ 3 = 6m - 2 + 2
⇔ 3 = 6m
⇔ m = 1212 (t/m)
Vậy m = 1212 thì đồ thị hàm số y = (3m - 1)x + 2 đi qua điểm A(2; 3)
a: Để hàm số nghịch biến thì 1-2m<0
hay \(m>\dfrac{1}{2}\)
b: Để hàm số nghịch biến thì m-1<0
hay m<1
c: Để hàm số nghịch biến thì \(\dfrac{m-5}{m}>0\)
hay \(\left[{}\begin{matrix}m>5\\m< 0\end{matrix}\right.\)
a: Để hàm số là hàm số bậc nhất thì 2m-3<>0
hay m<>3/2
b: Để hàm số đồng biến thì 2m-3>0
hay m>3/2
Để hàm số nghịch biến thì 2m-3<0
hay m<3/2
cậu xem đúng thì k y' = x^2 -(2m+1)x+3m+2. Để hs nghịch biến trong 1 khoản có độ dài > 1 thì y'=0 phải có 2 nghiệm phân biệt x1, x2 sao cho |x2-x1| >1 (lúc này thì y' =<0 trong khoản 2 nghiệm [x1, x2] tức là y nghịch biến trong đoạn [x1,x2])
<=> có hệ
(1) y'=0 có 2 nghiệm x1, x2
(2) |x2-x1| > 1 <=> (x2-x1)^2 -1>0 <=> (x1+x2)^2 - 4.x1.x2 -1 >0
mk mới hok lớp 8 nên cái tay bó tay!!! ^^
346456454574575675756768797835153453443457657656565
a) Để hàm đồng biến <=> a>0 <=> m-1>0 <=> m>1
Để hàm nghịch biến <=> a<0 <=> m<1
b)Có phải đề như này: \(y=-m^2x+1\)
Nhận xét: \(-m^2\le0\forall m\)
=> Hàm luôn nghịch biến với mọi \(m\ne0\)
c)Để hàm nghịch biến <=> a<0 <=> 1-3m<0\(\Leftrightarrow m>\dfrac{1}{3}\)
Để hàm đồng biền <=> a>0 \(\Leftrightarrow m< \dfrac{1}{3}\)
a/ Hàm số y=(m-1)x+2 đồng biến khi và chỉ khi m-1>0
⇔m>1
nghịch biến khi và chỉ khi m-1<0
⇔m<1
b/Hàm số y=-2mx+1 đồng biến khi và chỉ khi -2m>0
⇔m<0
nghịch biến khi và chỉ khi -2m<0
⇔m>0
c/Hàm số y=(1-3m)x+2m đồng biến khi và chỉ khi 1-3m>0
⇔-3m>-1
⇔m<\(\dfrac{1}{3}\)
nghịch biến khi và chỉ khi 1-3m<0
⇔-3m<-1
⇔m>\(\dfrac{1}{3}\)