cho B = 2012/2013 + 2013/2014 + 2015/2012 . hãy so sánh B với 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{2013-1}{2013}+\frac{2014-1}{2014}+\frac{2012+3}{2012}\)
\(B=1-\frac{1}{2013}+1-\frac{1}{2014}+1+\frac{3}{2012}=3+\frac{3}{2012}-\left(\frac{1}{2013}+\frac{1}{2014}\right)\)
Ta có
\(\frac{1}{2013}< \frac{1}{2012};\frac{1}{2014}< \frac{1}{2012}\Rightarrow\frac{1}{2013}+\frac{1}{2014}< \frac{2}{2012}\)
Mà \(\frac{3}{2012}-\frac{2}{2012}=\frac{1}{2012}>0\Rightarrow\frac{3}{2012}-\left(\frac{1}{2013}+\frac{1}{2014}\right)>0\)
=> B>3
Ta thấy B=2012+2013/2013+2014<1(vì 2012+2013<2013+2014)
Ta có A=2012/2013+2013/2014
A=1-1/2013+1-1/2014
A=(1+1)-(1/2013+1/2014)
A=2-(1/2013+1/2014)
Mà 1/2013<1/2;1/2014<1/2
=>1/2013+1/2014<1/2+1/2=1
=>2-(1/2013+1/2014)>1
=>A>1
Mà B<1
=>A>B
\(B=\frac{2012+2013}{2013+2014}=\frac{2012}{2013+2014}+\frac{2013}{2013+2014}< \frac{2012}{2013}+\frac{2013}{2014}=A\)
Vậy B<A
Ta có:
B=2012/(2013+2014)+2013/(2013+2014)
Xét từng số hạng của B:
2012/(2013+2014)<2012/2013
2013/2013+2014<2013/2014
=>B=2012/(2013+2014)+2013/(2013+2014)<2012/2013+2013/2014=A
=>B<A
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}$
1)Ta có : 212121/353535 = 212121:10101/353535:10101 = 21/35 = 3/5
131313/141414 = 131313:10101/141414:10101 = 13/14
Ta có : 3/5 = 42/70 ; 13/14 = 65/70
Vì 42<65 => 42/70<65/70 => 212121/353535<131313/141414
2)Ta có : 2012/2013<1
2013/2014<1
2014/2015<1
=> 2012/2013+ 2013/2014+ 2015/2012<1+1+1=3
Vậy 2012/2013+ 2013/2014+ 2015/2012<3
\(B=\frac{2012}{2013}+\frac{2013}{2014}+\frac{2015}{2012}\)
\(B=\frac{2012}{2013}+\frac{2013}{2014}+\left(\frac{1}{2012}+\frac{1}{2012}+\frac{2013}{2012}\right)\)
\(B=\left(\frac{2012}{2013}+\frac{1}{2012}\right)+\left(\frac{2013}{2014}+\frac{1}{2012}\right)+\frac{2013}{2012}\)
\(3=1+1+1\)
\(\frac{2012}{2013}+\frac{1}{2012}>1\)
\(\frac{2013}{2014}+\frac{1}{2012}>1\)
\(\frac{2013}{2012}>1\)
vậy B > 3