So sánh hai số:
a) 227 và 318
b) 291 và 535
c) 2225 và 3150
d) 912 và 277
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 8:
a) \(2^{225}=\left(2^3\right)^{75}=8^{75}\)
\(3^{150}=\left(3^2\right)^{75}=9^{75}\)
Vì \(8^{75}< 9^{75}\Rightarrow2^{225}< 3^{150}\)
b) \(2^{91}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\)
Vì \(8192^7>3125^7\Rightarrow2^{91}>5^{35}\)
c) \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\)
\(1,\\ a,2^x=16=2^4\Rightarrow x=4\\ b,3^{x+1}=9^x=3^{2x}\\ \Rightarrow x+1=2x\Rightarrow x=1\\ c,2^{3x+2}=4^{x+5}=2^{2\left(x+5\right)}\\ \Rightarrow3x+2=2x+10\Rightarrow x=8\\ d,3^{2x-1}=243=3^5\\ \Rightarrow2x-1=5\Rightarrow x=3\\ 2,\\ a,2^{225}=8^{75}< 9^{75}=3^{150}\\ b,2^{91}=\left(2^{13}\right)^7=8192^7>3125^7=\left(5^5\right)^7=5^{35}\\ c,99^{20}=\left(99^2\right)^{10}< \left(99\cdot101\right)^{10}=9999^{10}\\ 3,\\ a,12^8\cdot9^{12}=2^{16}\cdot3^8\cdot3^{24}=2^{16}\cdot3^{32}=\left(2\cdot3^2\right)^{16}=18^{16}\\ b,75^{20}=\left(3\cdot5^2\right)^{20}=3^{20}\cdot5^{40}=\left(3^{20}\cdot5^{10}\right)\cdot5^{30}=\left(3^2\cdot5\right)^{10}\cdot5^{30}=45^{10}\cdot5^{30}\)
Bài 1:
a) \(\Rightarrow2^x=2^4\Rightarrow x=4\)
b) \(\Rightarrow3^{x+1}=3^{2x}\Rightarrow x+1=2x\Rightarrow x=1\)
c) \(\Rightarrow2^{3x+2}=2^{2x+10}\Rightarrow3x+2=2x+10\Rightarrow x=8\)
d) \(\Rightarrow3^{2x-1}=3^5\Rightarrow2x-1=5\Rightarrow x=3\)
Bài 2:
a) \(2^{225}=\left(2^3\right)^{75}=8^{75}< 9^{75}=\left(3^2\right)^{75}=3^{150}\)
b) \(2^{91}=\left(2^{13}\right)^7=8192^7>3125^7=\left(5^5\right)^7=5^{35}\)
c) \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\)
Bài 3:
a) \(12^8.9^{12}=\left(4.3\right)^8.9^{12}=4^8.3^8.9^{12}=2^{16}.9^4.9^{12}=2^{16}.9^{16}=\left(2.9\right)^{16}=18^{16}\)
b) \(75^{20}=\left(75^2\right)^{10}=5625^{10}=\left(45.125\right)^{10}=45^{10}.125^{10}=45^{10}.5^{30}\)
a) Vì 39 < 54 nên -39 > -54
b) Vì 3 179 < 3 279 nên - 3 179 > - 3 279.
2225 = 23.75 = (23)75 = 875
3150 = 32.75 = (32)75=975
8 < 9 ⇒ 875 < 975
Vậy : 2225 < 3150
a) \(\frac{{ - 3}}{8} = \frac{{ - 3.3}}{{8.3}} = \frac{{ - 9}}{{24}}\)
Vì -9 < -5 nên \(\frac{{ - 9}}{{24}} < \frac{{ - 5}}{{24}}\)
Vậy \(\frac{{ - 3}}{8} < \frac{{ - 5}}{{24}}\).
b) Cách 1: \(\frac{{ - 2}}{{ - 5}} = \frac{2}{5}; \frac{3}{{ - 5}} = \frac{-3}{{5}}\)
Vì 2 > -3 nên \(\frac{2}{5} > \frac{-3}{{5}}\)
Vậy \(\frac{{ - 2}}{{ - 5}} > \frac{3}{{ - 5}}\).
Cách 2: \(\frac{{ - 2}}{{ - 5}} = \frac{2}{5} > 0\) mà \(\frac{3}{{ - 5}} < 0\)
\(\Rightarrow\) \(\frac{{ - 2}}{{ - 5}} > \frac{3}{{ - 5}}\).
c) \(\frac{{ - 3}}{{ - 10}} = \frac{3}{{10}} = \frac{{3.2}}{{10.2}} = \frac{6}{{20}}\)
\(\frac{{ - 7}}{{ - 20}} = \frac{7}{{20}}\)
Vì 6 < 7 nên \(\frac{6}{{20}} < \frac{7}{{20}}\) nên \(\frac{{ - 3}}{{ - 10}} < \frac{{ - 7}}{{ - 20}}\).
d) \(\frac{{ - 5}}{4} = \frac{{ - 5.5}}{{4.5}} = \frac{{ - 25}}{{20}}; \frac{{ 23}}{{-20}}=\frac{{-23}}{{20}} \)
Vì -25 < -23 nên \( \frac{{ - 25}}{{20}} < \frac{{-23}}{{20}} \)
Vậy \(\frac{{ - 5}}{4} < \frac{{23}}{{ - 20}}\).
a) \(< \)
b) \(>\)
c) \(< \)
d) \(>\)
e) \(< \)
g) \(>\)
h) \(>\)
k) \(>\)
a) \(\dfrac{2}{5}=\dfrac{4}{10}\)
\(\dfrac{4}{10}>\dfrac{3}{10}\)
b) \(\dfrac{5}{6}=\dfrac{10}{12}\)
\(\dfrac{7}{12}< \dfrac{10}{12}\)
c) \(\dfrac{1}{2}=\dfrac{2}{4}\)
\(\dfrac{3}{4}< \dfrac{2}{4}\)
d) \(\dfrac{8}{3}=\dfrac{56}{21}\)
\(\dfrac{56}{21}>\dfrac{11}{21}\)
\(\dfrac{333}{337}=\dfrac{337}{337}-\dfrac{4}{337}=1-\dfrac{4}{337}\\ \dfrac{277}{281}=\dfrac{281}{281}-\dfrac{4}{281}=1-\dfrac{4}{281}\\ \)
Ta thấy : \(\dfrac{4}{337}< \dfrac{4}{281}\)
\(=>1-\dfrac{4}{337}>1-\dfrac{4}{281}\\ =>\dfrac{333}{337}>\dfrac{277}{281}\)
b/ Ta có: 291>290=(25)18=3218>2518=(52)18=536>535 => 291>535
c/ Ta có: 2225=(23)75=875
3150=(32)75=975
Vì 875<975 nên 2225<3150
a)Ta có: 2^27=(2^3)^9=8^9
3^18=(3^2)^9=9^9
Vì 8^9 <9^9
2^27<3^18
d)Ta có :27^7=(3^3)^7=3^21
9^12=(3^2)^12=3^24
Vì 3^21<3^24
27^7<9^12