Có ... giá trị của x thỏa mãn : \(\dfrac{1}{2}\) < \(\dfrac{6}{x}\) < \(\dfrac{3}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = \(\dfrac{1}{x-1}-\dfrac{4}{x+1}+\dfrac{8x}{\left(x-1\right)\left(x+1\right)}\)
= \(\dfrac{x+1-4x+4+8x}{\left(x-1\right)\left(x+1\right)}=\dfrac{5x+5}{\left(x-1\right)\left(x+1\right)}=\dfrac{5}{x-1}\) => đpcm
b) \(\left|x-2\right|=3=>\left[{}\begin{matrix}x-2=3< =>x=5\left(C\right)\\x-2=-3< =>x=-1\left(L\right)\end{matrix}\right.\)
Thay x = 5 vào A, ta có:
A = \(\dfrac{5}{5-1}=\dfrac{5}{4}\)
c) Để A nguyên <=> \(5⋮x-1\)
x-1 | -5 | -1 | 1 | 5 |
x | -4(C) | 0(C) | 2(C) | 6(C) |
`a/(x+1)+b/(x-2)=(a(x-2)+b(x+1))/((x+1)(x-2))`
`=(ax-2a+bx+b)/(x^2-x-2)`
`=((a+b)x+(-2a+b))/(x^2-x-2)`
``
Theo đề bài: `((a+b)x+(-2a+b))/(x^2-x-2)=(32x-19)/(x^2-x-2)`
Đồng nhất hệ số ta được: `{(a+b=32),(-2a+b=-19):}`
`<=>{(a+b=32),(2a-b=19):}`
`<=>{(3a=51),(a+b=32):}`
`<=>{(a=17),(17+b=32):}`
`<=>{(a=17),(b=15):}`
Áp dụng BĐT cosi:
`1/x^2+1/y^2>=2/(xy)`
`<=>2>=2/(xy)`
`<=>1>=1/(xy)`
`<=>xy>=1`
Dấu "=" xảy ra khi `x=y=1`
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-4\right)\\x_1x_2=-m^2+4\end{matrix}\right.\)
\(\dfrac{x_1+x_2}{x_1x_2}+\dfrac{4}{x_1x_2}=1\)
Thay vào ta được : \(\dfrac{2\left(m-4\right)+4}{-m^2+4}=1\Leftrightarrow\dfrac{2m-4}{\left(2-m\right)\left(m+2\right)}=1\Leftrightarrow\dfrac{-2}{m+2}=1\Rightarrow-2=m+2\Leftrightarrow m=-4\)
\(\dfrac{x-2}{0,2}=\dfrac{0,7}{4}\)
\(\Rightarrow4\left(x-2\right)=0,7\cdot0,2\)
\(\Rightarrow4x-8=0,14\)
\(\Rightarrow4x=0,14+8\)
\(\Rightarrow4x=8,14\)
\(\Rightarrow x=8,14:4\)
\(\Rightarrow x=2,035\)
ta có : 1/2<6/x<3/4
Hay 6/12<6/x<6/8
=> xϵ{11;10;9}