cach giai phuong trinh chua an o mau x
/x-2+x+3/x-1=6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)thay k=0, ta có
\(4x^2-25+0^2+4.0.x=0\)
\(\Leftrightarrow4x^2-25+0+0=0\)
\(\Leftrightarrow4x^2-25=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}2x-5=0\\2x+5=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\x=-\frac{5}{2}\end{cases}}\)
Vậy tập nghiệm của PT là \(S=\left\{\frac{5}{2};-\frac{5}{2}\right\}\)
b) Thay k=-3, ta có:
\(4x^2-25+\left(-3\right)^2+4\left(-3\right)x=0\)
\(\Leftrightarrow4x^2-25+9-12x=0\)
\(\Leftrightarrow4x^2-16-12x=0\)
\(\Leftrightarrow4x^2-16+4x-16x=0\)
\(\Leftrightarrow\left(4x^2+4x\right)-\left(16x+16\right)=0\)
\(\Leftrightarrow4x\left(x+1\right)-16\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(4x-16\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x+1=0\\4x-16=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-1\\x=4\end{cases}}\)
Vậy tập nghiệm của PT là \(S=\left\{-1;4\right\}\)
c) Thay x=-2, ta có:
\(4\left(-2\right)^2-25+k^2+4\left(-2\right)k=0\)
\(\Leftrightarrow16-25+k^2-8k=0\)
\(\Leftrightarrow-9+k^2-8k=0\)
\(\Leftrightarrow-9+k^2+k-9k=0\)
\(\Leftrightarrow\left(k^2+k\right)-\left(9k+9\right)=0\)
\(\Leftrightarrow k\left(k+1\right)-9\left(k+1\right)=0\)
\(\Leftrightarrow\left(k+1\right)\left(k-9\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}k+1=0\\k-9=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}k=-1\\k=9\end{cases}}\)
Vậy tập nghiệm của PT là \(S=\left\{-1;9\right\}\)
\(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15=0\)
\(\Leftrightarrow\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15=0\)
Đặt \(x^2+8x+11=y\Rightarrow x^2+8x+7=y-4;x^2+8x+15=y+4\)
Khi đó:
\(pt\Leftrightarrow\left(y-4\right)\left(y+4\right)+15=0\)
\(\Leftrightarrow y^2-1=0\)
\(\Leftrightarrow y=1;y=-1\)
Nếu \(y=1\Rightarrow x^2+8x+11=1\)
\(\Rightarrow x^2+8x+10=0\)
\(\Rightarrow-\left(6-x^2-8x-16\right)=0\)
\(\Rightarrow-\left[6-\left(x+4\right)^2\right]=0\)
\(\Rightarrow-\left(\sqrt{6}-x-4\right)\left(\sqrt{6}+x+4\right)=0\)
\(\Rightarrow x=-4-\sqrt{6};x=\sqrt{6}-4\)
Nếu \(y=-1\),ta có:
\(x^2+8x+11=-1\)
\(\Rightarrow x^2+8x+12=0\)
\(\Rightarrow x^2+2x+6x+12=0\)
\(\Rightarrow x\left(x+2\right)+6\left(x+2\right)=0\)
\(\Rightarrow\left(x+2\right)\left(x+6\right)=0\)
\(\Rightarrow x=-2;x=-6\)
Vậy \(x=-2;x=-6;x=-4-\sqrt{6};x=\sqrt{6}-4\)
Thay x = -2 vào PT ta đc
16-25+k2 -8k=0
k2 -8k-9=0
=>k=9
k=-1
Thay x = 2 vào phương trình :
\(4\cdot2^2-25+k^2+4\cdot2\cdot k=0\)
\(\Rightarrow16-25+k^2+8k=0\)
\(\Rightarrow k^2+8k-9=0\)
\(\Rightarrow k^2+k-9k-9=0\)
\(\Rightarrow\left(k-1\right)\left(k+9\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}k=1\\k=9\end{matrix}\right.\)
Vậy k \(\in\left\{1;9\right\}\)
a) Ta có: \(\frac{x+a}{x+2}+\frac{x-2}{x-a}=2\left(1\right)\)
Với a = 4
Thay vào phương trình (t) ta được:
\(\frac{x+2}{x+2}+\frac{x-2}{x-2}=2\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow x^2-4+x^2-4=2\left(x^2-4\right)\)
\(\Leftrightarrow2x^2=2x^2-8\)
\(\Leftrightarrow0x=-8\)
Vậy phương trình vô nghiệm
b) Nếu x = -1
\(\Rightarrow\frac{-1+a}{-1+2}+\frac{-1-2}{-1-a}=2\)
\(\Leftrightarrow\frac{-1+a}{1}+\frac{-3}{-1-a}=2\)
\(\Leftrightarrow\frac{\left(-1+a\right)\left(-1-a\right)}{-1-a}+\frac{-3}{-1-a}=\frac{2\left(-1-a\right)}{-1-a}\)
\(\Leftrightarrow1+a-a-a^2-3=-2-2a\)
\(\Leftrightarrow-a^2+2a=-2-1+3\)
\(\Leftrightarrow a\left(2-a\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=0\\2-a=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=0\\a=2\end{cases}}}\)
Vậy a = {0;2}
NĂM MỚI VUI VẺ