Cho ΔABC vuông tại A có đường cao AH.AB=2;AC=3CH.Diện tích ΔABC bằng
A.\(\dfrac{\sqrt{2}}{2}\) B.\(2\sqrt{2}\) C.\(\dfrac{3\sqrt{3}}{2}\) D.\(3\sqrt{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(a,\sin\widehat{B}=\sin60^0=\dfrac{AC}{BC}=\dfrac{\sqrt{3}}{2}\Leftrightarrow AC=\dfrac{12\sqrt{3}}{2}=6\sqrt{3}\left(cm\right)\\ b,AC^2=CH\cdot BC\left(HTL.\Delta\right)\\ \Rightarrow CH=\dfrac{AC^2}{BC}=9\left(cm\right)\)
Tim Gia Tri Nho Nhat Cua
a) A = x - 4 can x + 9
b) B = x - 3 can x - 10
c ) C = x - can x + 1
d ) D = x + can x + 2
Bài 1:
a: Xét ΔBAC vuông tại A có
\(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{C}=60^0\)
Xét ΔBAC vuông tại A có
\(AB=BC\cdot\sin60^0\)
\(\Leftrightarrow BC=4\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow AC=2\sqrt{3}\left(cm\right)\)
Xét tam giác ABC vuông tại A có:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)(hệ thức lượng trong tam giác vuông)
\(\Rightarrow\dfrac{1}{AH^2}=\dfrac{1}{4^2}+\dfrac{1}{10^2}=\dfrac{29}{400}\)\(\Rightarrow AH^2=\dfrac{400}{29}\Rightarrow AH=\dfrac{20\sqrt{29}}{29}\left(cm\right)\)
Xét tg AHC vg tại H: \(\sin\widehat{C}=\dfrac{AH}{AC}=\sin30^0=\dfrac{1}{2}\Leftrightarrow AC=4\)
Xét tg ABC vg tại A: \(\tan\widehat{C}=\tan30^0=\dfrac{AB}{AC}=\dfrac{\sqrt{3}}{3}\Leftrightarrow AB=\dfrac{4\sqrt{3}}{3}\)
a: Xét ΔBAC có BC^2=AB^2+AC^2
nên ΔABC vuông tại A
Xét ΔABC vuông tại A có AH là đường cao
nên AH*BC=AB*AC
=>AH*25=15*20=300
=>AH=12(cm)
b: Xét ΔABC có AD là phân giác
nên BD/CD=AB/AC=3/4
=>BD/BC=3/7; CD/CB=4/7
Xét ΔCAB có DF//AB
nên DF/AB=CD/CB
=>DF/15=4/7
=>DF=60/7(cm)
Xét ΔCAB có DE//AC
nên DE/AC=BD/BC
=>DE/20=3/7
=>DE=60/7(cm)
Xét tứ giác AEDF có
góc AED=góc AFD=góc FAE=90 độ
Do đó: AEDF là hình chữ nhật
=>S AEDF=DE*DF=60/7*60/7=3600/49cm2
Bài 2:
Xét ΔABC có AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{BH}{CH}=\dfrac{1}{9}\)
Bài 2:
b: \(AH\cdot\left(\cot\widehat{B}+\cot\widehat{C}\right)\)
\(=AH\cdot\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)\)
\(=AH\cdot\dfrac{BC}{AH}=BC\)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
b: ta có: ΔABC\(\sim\)ΔHBA
nên BA/BH=BC/BA
hay \(BA^2=BH\cdot BC\)
a.Xét tam giác ABC và tam giác HBA, có:
^B: chung
^BAC = ^BHA = 90 độ
Vậy tam giác ABC đồng dạng tam giác HBA (g.g)
b.\(\rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\)
\(\Leftrightarrow AB^2=BH.BC\left(đfcm\right)\) (1)
c.Áp dụng định lý pitago \(\Rightarrow BC=\sqrt{6^2+10^2}=2\sqrt{34}\left(cm\right)\)
(1) \(\Leftrightarrow6^2=2\sqrt{34}BH\)
\(\Leftrightarrow BH=\dfrac{9\sqrt{34}}{17}\left(cm\right)\)
Áp dụng định lý pitago trong tam giác ABH \(\Rightarrow AH=\sqrt{6^2-\left(\dfrac{9\sqrt{34}}{17}\right)^2}=\dfrac{15\sqrt{34}}{17}\left(cm\right)\)
A.\(\dfrac{\sqrt{2}}{2}\)
\(\Delta AHC\perp\) tại H ; \(AH^2=AC^2-CH^2=AC^2-\dfrac{1}{9}AC^2=\dfrac{8}{9}AC^2\)
\(\Delta ABC\perp\) tại A ; \(AH\perp BC\) tại H . Khi đó :
\(\dfrac{1}{AC^2}=\dfrac{1}{AH^2}-\dfrac{1}{AB^2}=\dfrac{9}{8AC^2}-\dfrac{1}{4}\) \(\Rightarrow\dfrac{1}{8AC^2}=\dfrac{1}{4}\Rightarrow AC^2=\dfrac{1}{2}\)
\(\Rightarrow AC=\dfrac{1}{\sqrt{2}}\)
\(S_{ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.2.\dfrac{1}{\sqrt{2}}=\dfrac{1}{\sqrt{2}}\)
Chọn A