K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2023

A.\(\dfrac{\sqrt{2}}{2}\)

14 tháng 2 2023

\(\Delta AHC\perp\) tại H ; \(AH^2=AC^2-CH^2=AC^2-\dfrac{1}{9}AC^2=\dfrac{8}{9}AC^2\)

\(\Delta ABC\perp\) tại A ; \(AH\perp BC\) tại H . Khi đó : 

\(\dfrac{1}{AC^2}=\dfrac{1}{AH^2}-\dfrac{1}{AB^2}=\dfrac{9}{8AC^2}-\dfrac{1}{4}\) \(\Rightarrow\dfrac{1}{8AC^2}=\dfrac{1}{4}\Rightarrow AC^2=\dfrac{1}{2}\)

\(\Rightarrow AC=\dfrac{1}{\sqrt{2}}\) 

\(S_{ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.2.\dfrac{1}{\sqrt{2}}=\dfrac{1}{\sqrt{2}}\)

Chọn A 

 

2 tháng 10 2021

1.

\(a,\sin\widehat{B}=\sin60^0=\dfrac{AC}{BC}=\dfrac{\sqrt{3}}{2}\Leftrightarrow AC=\dfrac{12\sqrt{3}}{2}=6\sqrt{3}\left(cm\right)\\ b,AC^2=CH\cdot BC\left(HTL.\Delta\right)\\ \Rightarrow CH=\dfrac{AC^2}{BC}=9\left(cm\right)\)

 

2 tháng 10 2021

Tim Gia Tri Nho Nhat Cua 

a) A = x - 4 can x + 9

b) B = x - 3 can x - 10 

c ) C = x - can x + 1 

d ) D = x + can x + 2 

Bài 1:

a: Xét ΔBAC vuông tại A có 

\(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{C}=60^0\)

Xét ΔBAC vuông tại A có 

\(AB=BC\cdot\sin60^0\)

\(\Leftrightarrow BC=4\sqrt{3}\left(cm\right)\)

\(\Leftrightarrow AC=2\sqrt{3}\left(cm\right)\)

6 tháng 9 2021

Xét tam giác ABC vuông tại A có:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)(hệ thức lượng trong tam giác vuông)

\(\Rightarrow\dfrac{1}{AH^2}=\dfrac{1}{4^2}+\dfrac{1}{10^2}=\dfrac{29}{400}\)\(\Rightarrow AH^2=\dfrac{400}{29}\Rightarrow AH=\dfrac{20\sqrt{29}}{29}\left(cm\right)\)

14 tháng 10 2021

Xét tg AHC vg tại H: \(\sin\widehat{C}=\dfrac{AH}{AC}=\sin30^0=\dfrac{1}{2}\Leftrightarrow AC=4\)

Xét tg ABC vg tại A: \(\tan\widehat{C}=\tan30^0=\dfrac{AB}{AC}=\dfrac{\sqrt{3}}{3}\Leftrightarrow AB=\dfrac{4\sqrt{3}}{3}\)

a: Xét ΔBAC có BC^2=AB^2+AC^2

nên ΔABC vuông tại A

Xét ΔABC vuông tại A có AH là đường cao

nên AH*BC=AB*AC

=>AH*25=15*20=300

=>AH=12(cm)

b: Xét ΔABC có AD là phân giác

nên BD/CD=AB/AC=3/4

=>BD/BC=3/7; CD/CB=4/7

Xét ΔCAB có DF//AB

nên DF/AB=CD/CB

=>DF/15=4/7

=>DF=60/7(cm)

Xét ΔCAB có DE//AC

nên DE/AC=BD/BC

=>DE/20=3/7

=>DE=60/7(cm)

Xét tứ giác AEDF có

góc AED=góc AFD=góc FAE=90 độ

Do đó: AEDF là hình chữ nhật

=>S AEDF=DE*DF=60/7*60/7=3600/49cm2

Bài 2: 

Xét ΔABC có AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)

\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{1}{3}\)

\(\Leftrightarrow\dfrac{BH}{CH}=\dfrac{1}{9}\)

6 tháng 10 2021

cảm ơn nhiều ạ

Bài 2: 

b: \(AH\cdot\left(\cot\widehat{B}+\cot\widehat{C}\right)\)

\(=AH\cdot\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)\)

\(=AH\cdot\dfrac{BC}{AH}=BC\)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

b: ta có: ΔABC\(\sim\)ΔHBA

nên BA/BH=BC/BA

hay \(BA^2=BH\cdot BC\)

10 tháng 5 2022

a.Xét tam giác ABC và tam giác HBA, có:

^B: chung

^BAC = ^BHA = 90 độ

Vậy tam giác ABC đồng dạng tam giác HBA (g.g)

b.\(\rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\)

\(\Leftrightarrow AB^2=BH.BC\left(đfcm\right)\) (1)

c.Áp dụng định lý pitago \(\Rightarrow BC=\sqrt{6^2+10^2}=2\sqrt{34}\left(cm\right)\)

(1) \(\Leftrightarrow6^2=2\sqrt{34}BH\)

\(\Leftrightarrow BH=\dfrac{9\sqrt{34}}{17}\left(cm\right)\)

Áp dụng định lý pitago trong tam giác ABH \(\Rightarrow AH=\sqrt{6^2-\left(\dfrac{9\sqrt{34}}{17}\right)^2}=\dfrac{15\sqrt{34}}{17}\left(cm\right)\)