Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:
\(AE\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:
\(AF\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Xét ΔAEF và ΔACB có
\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)(cmt)
\(\widehat{EAF}\) chung
Do đó: ΔAEF\(\sim\)ΔACB(c-g-c)
Suy ra: \(\widehat{AFE}=\widehat{ABC}\)
b: Xét ΔBAC vuông tại B có BH là đường cao
nên \(HA\cdot HC=BH^2\left(1\right)\)
Xét ΔBHC vuông tại H có HE là đường cao
nên \(BE\cdot BC=BH^2\left(2\right)\)
Từ (1) và (2) suy ra \(HA\cdot HC=BE\cdot BC\)
a: Xét ΔBAC có BC^2=AB^2+AC^2
nên ΔABC vuông tại A
Xét ΔABC vuông tại A có AH là đường cao
nên AH*BC=AB*AC
=>AH*25=15*20=300
=>AH=12(cm)
b: Xét ΔABC có AD là phân giác
nên BD/CD=AB/AC=3/4
=>BD/BC=3/7; CD/CB=4/7
Xét ΔCAB có DF//AB
nên DF/AB=CD/CB
=>DF/15=4/7
=>DF=60/7(cm)
Xét ΔCAB có DE//AC
nên DE/AC=BD/BC
=>DE/20=3/7
=>DE=60/7(cm)
Xét tứ giác AEDF có
góc AED=góc AFD=góc FAE=90 độ
Do đó: AEDF là hình chữ nhật
=>S AEDF=DE*DF=60/7*60/7=3600/49cm2