Tìm các số nguyên x y thỏa mãn \(\frac{x}{3}+\frac{1}{y}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
Nếu \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)
Nếu \(y>0\Rightarrow3^y⋮3\)
Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý
Vậy.....
b
Không mất tính tổng quát giả sử \(x\ge y\)
Ta có:
\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)
\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)
Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )
Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)
Vậy x=4;y=2 và các hoán vị
\(\frac{x}{8}-\frac{1}{y}=\frac{3}{8}\)
\(\Rightarrow\frac{1}{y}=\frac{x-3}{8}\)
\(\Rightarrow y\left(x-3\right)=8\)
Ta có bảng sau:
y | 1 | 8 | -1 | -8 | 2 | 4 | -2 | -4 |
x - 3 | 8 | 1 | -8 | -1 | 4 | 2 | -4 | -2 |
x | 11 | 4 | -5 | 2 | 7 | 5 | -1 | 1 |
Vậy các cặp số (x,y) là: (1,11) ; (8,4) ; (-1,-5) ; (-8,2) ; (2,7) ; (4,5) ; (-2,-1) ; (-4,1)
=> x+y/xy =1/3 =>3.[(x-3)+3]=(x-3).y TH1:x-3=1;y-3=9 TH3:x-3= -1;y-3= -9 Vậy{x;y}={4;12};{6;6};{2;-6}
=>(x+y).3=xy =>3.(x-3)+9=(x-3).y =>x=4;y=12(TM) =>x=2;y= -6(TM)
=>3x + 3y=xy =>9=(x-3)(y-3) TH2:x-3=3;y-3=3 TH4:x-3=3;y-3=3
=>3x=xy-3y =>x-3;y-3 thuộc Ư(9) =>x=6;y=6(TM) =>x=0;y=0(L)
=>3x=(x-3).y
\(\frac{x}{4}-\frac{1}{y}=\frac{3}{4}\)
\(\frac{1}{y}=\frac{x-3}{4}\)
\(\left(x-3\right)\times y=4=\left(-1\right)\times\left(-4\right)=\left(-4\right)\times\left(-1\right)=4\times1=1\times4=2\times2=\left(-2\right)\times\left(-2\right)\)
Vậy \(\left(x;y\right)\in\left\{\left(2;-4\right);\left(-1;-1\right);\left(7;1\right);\left(4;4\right);\left(5;2\right);\left(1;-2\right)\right\}\)
\(\frac{1}{x}+\frac{y}{3}=\frac{2}{5}\)
\(\frac{1}{x}=\frac{2}{5}-\frac{y}{3}\)
\(\frac{1}{x}=\frac{6}{15}-\frac{y\times5}{15}\)
\(\Rightarrow\)\(\frac{1}{x}=\frac{6-\left(y\times5\right)}{15}\)
\(\Rightarrow\)1\(\times\)15=\(x\times\left(6-y\times5\right)\)\(\Rightarrow15=x\times\left(6-y\times5\right)\)
\(\Rightarrow x,6-y\times5\in u\left(15\right)\)
phan sau tu lam tiep nhe. xin loi minh khong an duoc dau nhe!
\(\frac{1}{x}+\frac{y}{3}=\frac{2}{5}\)
\(\Rightarrow\frac{1}{x}=\frac{2}{5}-\frac{y}{3}\)
\(\Rightarrow\frac{1}{x}=\frac{6-5y}{15}\)
\(\Rightarrow x=\frac{15}{6-5y}\)
Vì x\(\in\)Z \(\Rightarrow\)\(\frac{15}{6-5y}\) \(\in\) Z
\(\Rightarrow6-5y\in\text{Ư}\left(15\right)\)
\(\Rightarrow6-5y=1\)(các số còn lại thuộc tập các ước của 15 đều không thỏa mãn)
\(\Rightarrow y=1\)
Tại y=1 thì x=15
Vậy có 1 cặp (x;y) thỏa mãn đề bài là x=15 và y=1
Bài này bạn đăng rồi Nguyễn Nhật Minh trả lời đúng rồi mà :
http://olm.vn/hoi-dap/question/314450.html
x=2,y=3
k cho mk nha
Ta có:\(\frac{x}{3}+\frac{1}{y}=1\)
\(\Rightarrow\frac{x.y}{3.y}+\frac{3}{3.y}=\frac{3.y}{3.y}\)
\(\Rightarrow x.y+3=3.y\)
\(\Rightarrow x.y-3.y=-3\)
\(\Rightarrow y.\left(x-3\right)=-3\)
\(\Rightarrow y.\left(x-3\right)=\left(-1\right).3=1.\left(-3\right)\)
Ta lập bảng các giá trị của y và x-3 :
Từ đó suy ra :
Vậy các số nguyên (x,y) thỏa mãn đề bài là :(0;1) ;(2:3) ;(4:-3) ;(6:-1)