Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=> x+y+2=xy
<=> y+2=xy-x
<=> y+2=x(y-1)
<=> x= (y+2)/(y-1)=(y-1+3)/(y-1)= 1+ 3/(y-1)
Vậy, để x nguyên thì y-1 phải là ước của 3
=> y-1={-3; -1; 1; 3}
=> y={-2; 0; 2; 4}
=> x={0; -2; 4; 2}
Do x, y khác 0 nên các cặp x, y thỏa mãn là (4; 2) và (2; 4)
Bài này bạn đăng rồi Nguyễn Nhật Minh trả lời đúng rồi mà :
http://olm.vn/hoi-dap/question/314450.html
Ta có\(\left(x+y-3\right)^2+6=\frac{12}{\left|y-1\right|+\left|y-3\right|}\left(1\right)\)
:\(\frac{12}{\left|y-1\right|+\left|y-3\right|}=\frac{12}{\left|y-1\right|+\left|3-y\right|}\le\frac{12}{\left|y-1+3-y\right|}=\frac{12}{2}=6\left(2\right)\)
\(\left(x+y-3\right)^2+6\ge6\left(3\right)\)
Từ (1),(2) và (3)
Suy ra dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y-3=0\\\left(y-1\right)\left(3-y\right)\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}1\le y\le3\\x+y=3\end{cases}}\)
Với y=1 thì x=2
Với y=2 thì x=1
Với y=3 thì x=0
Vậy....................
1)
\(xy-y=x\Leftrightarrow y=\frac{x}{x-1}=1+\frac{1}{x-1}\)
y thuộc Z => x -1 thuộc U(1) ={ -1;1}
+x =-1 => y =0
+x =1 => y =2
2) \(x.\left(1-\frac{1}{7}\right)<1\frac{6}{7}\Leftrightarrow x.\frac{6}{7}<\frac{13}{7}\Rightarrow x<\frac{13}{7}.\frac{7}{6}=\frac{13}{6}=2,1\left(6\right)\)
x thuộc Z+ => x thuộc {1;2}
=> x+y/xy =1/3 =>3.[(x-3)+3]=(x-3).y TH1:x-3=1;y-3=9 TH3:x-3= -1;y-3= -9 Vậy{x;y}={4;12};{6;6};{2;-6}
=>(x+y).3=xy =>3.(x-3)+9=(x-3).y =>x=4;y=12(TM) =>x=2;y= -6(TM)
=>3x + 3y=xy =>9=(x-3)(y-3) TH2:x-3=3;y-3=3 TH4:x-3=3;y-3=3
=>3x=xy-3y =>x-3;y-3 thuộc Ư(9) =>x=6;y=6(TM) =>x=0;y=0(L)
=>3x=(x-3).y