K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2016

Ta có: S=1+3+3^2+3^3+...+3^99 
S = (1+3^1+3^2+3^3) + (3^5+3^6+3^7+3^8) + ... + (3^96+3^97+3^98+3^99) (cứ 4 số hạng gộp lại) 
S=(1+3^1+3^2+3^3) + 3^5(1+3^1+3^2+3^3) + ...+3^96(1+3^1+3^2+3^3) 
Mà 1+3^1+3^2+3^3 = 40 
Nên S= 40 + 3^5.40 +... + 3^96.40 
=40.(1+3^5+...+3^96)

=10.4(1+3^5+..+3^96)  ( chia hết cho 10) 

Vậy S chia hết cho 10

28 tháng 11 2016

S= ( 1+3+3^2))+...+(3^98+3^99)

=3*(1+3^2)+..+3^98*(1+3^2)

=3*4+...+3^98*4

=3*4+...+3^99*3*4

=12+...+3^99*12

=S=(1+...+3^99)*10 chia het cho10 

=> S chia het cho 10

Minh nghi la vayt vi minh cung ko chac la dung neu sai thi mong ban thong cam !

S = (1 - 3 + 32 - 33) + 34 . (1 - 3 + 32 - 33) + .... + 396 . (1 - 3 + 32 - 33)

S = (-20) + 34 . (-20) +.... + 396 . (-20)

S = (-20) . (1 + 34 +...+ 396

\(\Rightarrow\)\(⋮\) 20 

(Ko bt có đúng ko)

*KO CHÉP MẠNG*

 

13 tháng 3 2021

qua đúng

 

23 tháng 6 2023

  a,

S  =     1 -  3 + 32 - 33+...+398 - 399

S  =   30 - 31 + 32 - 33+...+ 398 - 399

xét dãy số: 0; 1; 2; 3;...;99 

Dãy số trên là dãy số cách đều với khoảng cách là: 1 - 0 = 1

Dãy số trên có số số hạng là: (99 - 0): 1 + 1 = 100 (số)

100 : 4 = 25

Vậy ta nhóm 4 số hạng liên tiếp của tổng S thành 1 nhóm thì: 

S = ( 1 - 3 + 32 - 33) +....+( 396 - 397 + 398 - 399)

S = - 20+...+ 396.(1 - 3 + 32 - 33)

S = - 20 +...+ 396.(-20)

S = -20.( 30 + ...+ 396) (đpcm)

b,

  S           = 1 - 3 + 32 - 33+...+ 398 - 399

3S          =      3  - 32 + 33-...-398  + 399 - 3100

3S + S   =    - 3100 + 1

4S        = - 3100 + 1 

 S        = ( -3100 + 1): 4

S        = - ( 3100 - 1) : 4

Vì S là số nguyên nên 3100 - 1 ⋮ 4 ⇒ 3100 : 4 dư 1 (đpcm)

 

17 tháng 12

nhớ ngắn gọn nha

1 tháng 8 2023

Bài 1:

\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)

Bài 2:

\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)

1 tháng 8 2023

Bài 1 :

\(2^{49}=\left(2^7\right)^7=128^7\)

\(5^{21}=\left(5^3\right)^7=125^7\)

mà \(125^7< 128^7\)

\(\Rightarrow2^{49}>5^{21}\)

Bài 2 :

a) \(S=1+3+3^2+3^3+...3^{99}\)

\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)

\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)

\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)

\(\Rightarrow dpcm\)

b) \(S=1+4+4^2+4^3+...4^{62}\)

\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)

\(\Rightarrow S=21+4^3.21+...4^{60}.21\)

\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)

\(\Rightarrow dpcm\)

DD
2 tháng 7 2021

\(B=3+3^2+3^3+...+3^{360}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{359}+3^{360}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{359}\left(1+3\right)\)

\(=4\left(3+3^3+...+3^{359}\right)⋮4\)

\(B=3+3^2+3^3+...+3^{360}\)

\(=\left(3+3^2+3^3\right)+...+\left(3^{358}+3^{359}+3^{360}\right)\)

\(=3\left(1+3+3^2\right)+...+3^{358}\left(1+3+3^2\right)\)

\(=13\left(3+3^4+...+3^{358}\right)⋮13\)

26 tháng 8 2021

\(S=1-3+3^2-3^3+...+3^{98}-3^{99}=\left(1-3+3^2-3^3\right)+3^4\left(1-3+3^3-3^3\right)+...+3^{96}\left(1-3+3^2-3^3\right)=\left(-20\right)+3^4.\left(-20\right)+...+3^{96}.\left(-20\right)=\left(-20\right)\left(1+3^4+...+3^{96}\right)⋮20\)

Ta có: \(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)

\(=\left(1-3+3^2-3^3\right)+...+3^{96}\left(1-3+3^2-3^3\right)\)

\(=-20\cdot\left(1+...+3^{96}\right)⋮20\)

bất kì số nào cũng chia hết cho 1 vì số nào chia  1 cũng bằng chính số đó

1 tháng 10 2017

VD: a chia hết cho b khi b nhân với stn k thì bằng a

Gọi các stn chia hết cho 11 là a,a sẽ chia hết cho 11 nếu 11 nhân với các stn bằng a

25 tháng 8 2023

Bài 1 :

a) \(a.b+b.19=713\) \(\left(a;b\inℕ^∗\right)\)

\(\Rightarrow b.\left(a+19\right)=713\)

\(\Rightarrow\left(a+19\right);b\in\left\{1;23;31;713\right\}\)

\(\Rightarrow\left(a;b\right)\in\left\{\left(-18;713\right);\left(4;31\right);\left(12;23\right);\left(694;1\right)\right\}\)

\(\Rightarrow\left(a;b\right)\in\left\{\left(4;31\right);\left(12;23\right);\left(694;1\right)\right\}\left(a;b\inℕ^∗\right)\)

b) \(a.b-10.b=650\)

\(\Rightarrow b.\left(a-10\right)=650\)

\(\Rightarrow\left(a-10\right);b\in\left\{1;5;10;13;25;26;50;65;130;325;650\right\}\)

Bạn lập bảng sẽ tìm ra (a;b)...

25 tháng 8 2023

Bài 2 :

a) \(3^4+3^5+3^6+3^7=3^4\left(1+3+3^2+3^3\right)=3^4.40\)

b) \(B=1+3+3^2+3^3+...+3^{99}\)

\(\Rightarrow B=\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)...+3^{96}.\left(1+3+3^2+3^3\right)\)

\(\Rightarrow B=40+3^4.40...+3^{96}.40\)

\(\Rightarrow B=40\left(1+3^4...+3^{96}\right)⋮40\)

\(\Rightarrow dpcm\)

Ta có: \(S=1+3^2+3^4+3^6+...+3^{98}\)

\(=\left(1+3^2\right)+\left(3^4+3^6\right)+...+\left(3^{96}+3^{98}\right)\)

\(=10+3^4\cdot10+...+3^{96}\cdot10\)

\(=10\left(1+3^4+...+3^{96}\right)⋮10\)(ĐPCM)