K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2016

Ta có: S=1+3+3^2+3^3+...+3^99 
S = (1+3^1+3^2+3^3) + (3^5+3^6+3^7+3^8) + ... + (3^96+3^97+3^98+3^99) (cứ 4 số hạng gộp lại) 
S=(1+3^1+3^2+3^3) + 3^5(1+3^1+3^2+3^3) + ...+3^96(1+3^1+3^2+3^3) 
Mà 1+3^1+3^2+3^3 = 40 
Nên S= 40 + 3^5.40 +... + 3^96.40 
=40.(1+3^5+...+3^96)

=10.4(1+3^5+..+3^96)  ( chia hết cho 10) 

Vậy S chia hết cho 10

28 tháng 11 2016

S= ( 1+3+3^2))+...+(3^98+3^99)

=3*(1+3^2)+..+3^98*(1+3^2)

=3*4+...+3^98*4

=3*4+...+3^99*3*4

=12+...+3^99*12

=S=(1+...+3^99)*10 chia het cho10 

=> S chia het cho 10

Minh nghi la vayt vi minh cung ko chac la dung neu sai thi mong ban thong cam !

29 tháng 9 2015

cho S = 1+3+32+ 33 + 3+ .......+ 399

Tổng S có tổng cộng 100 số hạng

S = 1+3+32+ 33 + 3+ .......+ 399 

= (1+3) +(32+ 33) + (3+35) .......(388+ 399 )  có 50 nhóm

= 4 + 32.(1+3)+34(1+3)+........+388(1+3)

= 4+ 32.4+34.4+........+388.4

= 4 (1+ 32+34+........+388) chia hết cho 4

b)

= (1+3 + 32+ 33) + (3+35+36+37) .......(386+387+388+ 399 )  có 100:4 = 25 nhóm

=  (1+3 + 32+ 33) + 34.(1+3 + 32+ 33) .......386.(1+3 + 32+ 33

=  40+ 34.40 .......386.40

= 40 ( 1 +34+ 38+....+386) chia hết cho 40

= 4+ 32.4+34.4+........+388.4

= 4 (1+ 32+34+........+388) chia hết cho 4

24 tháng 7 2015

ở phần câu hỏi tương tự có câu giống hết thế này được trả lời rôi bạn vào đó mà xem

24 tháng 7 2015

S=(1-3+32-33)+...+(396-397+398-399)

=-20+...+396(1-3+32-33)

=-20+...+396.(-20)=-20(1+..+396) chia hết cho -20 => S là bội của -20

b) 3S=3-32+33-34+..+399-3100

3S+S=(3-32+33-34+..+399-3100)+(1-3+32-33+..+398-399)

4S=1-3100

S=(1-3100):4

Vì S chia hết cho -20=>S chia hết cho 4=>1-3100 chia hết cho 4 => 3100 :4 dư 1

24 tháng 7 2015

S=(1-3+32-33)+...+(396-397+398-399)

 = -20+..+396(1-3+32-33)=-20+..+396.(-20)=-20(1+..+396) chia hết cho -20 => S là bội của -20

18 tháng 11 2016

S = 2 + 2 2 + 2 3 + ... + 2 99 + 2 100

S = ( 2 + 2 2 + 2 3 + 2 4 + 2 5 ) +  ... + ( 2 96 + 2 97 + 2 98 + 2 99 + 2 100 )

S = ( 2 + 2 2 + 2 3 + 2 4 + 2 5 ) +  ... + ( 2 + 2 2 + 2 3 + 2 4 + 2 5 ) . 2 95

S = 62 + ... + 62 . 2 96

S = 62 ( 1 + ... + 2 96 )

Vì 62 chia hết cho 31

=> 62 ( 1 + ... + 2 96 ) chia hết cho 31

=> S chia hết cho 31

25 tháng 10 2017

A = 1 + 3^1 + 3^2 + ... + 3^99

3A = 3 + 3^2+ 3^3 + ... + 3^100

3A = ( 3 + 3^2 ) + ( 3^3 + 3^4 ) + ... + ( 3^99 + 3^100 )

3A = 3 ( 1 + 3 ) + 3^3 ( 1 + 3 )  + ... + 3^99 ( 1 + 3 )

3A = 3 . 4 + 3^3 . 4 + ... + 3^99 . 4

3A = 4 . ( 3 + 3^3 + 3^99 ) \(⋮\)4

18 tháng 6 2020

help mình!!!!!plz

https://olm.vn/hoi-dap/detail/258202696527.html

https://olm.vn/hoi-dap/detail/258180737788.html

4 tháng 10 2016

a) \(\Rightarrow S=\left(1+3\right)+\left(3^2+3^3\right)+.....+\left(3^{88}+3^{99}\right)\)

\(\Rightarrow A=1\left(1+3\right)+3^2\left(1+3\right)+......+3^{88}\left(1+3\right)\)

\(\Rightarrow A=1.4+3^2.4+..........+3^{88}.4\)

\(\Rightarrow A=4.\left(1+3^2+.........+3^{88}\right)\)

Vậy A chia hết cho 4     ĐPCM

b) \(\Rightarrow A=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)\)\(+......+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)

\(\Rightarrow A=1\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+\)\(....+3^{96}\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=1.40+3^4.40+.......+3^{96}.40\)

\(\Rightarrow A=40.\left(1+3^4+....+3^{96}\right)\)

Vậy A chia hết cho 40      ĐPCM

21 tháng 1 2016

sai đề , ai thấy sai đề tick mk nha