Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho S = 1+3+32+ 33 + 34 + .......+ 399
Tổng S có tổng cộng 100 số hạng
S = 1+3+32+ 33 + 34 + .......+ 399
= (1+3) +(32+ 33) + (34 +35) .......(388+ 399 ) có 50 nhóm
= 4 + 32.(1+3)+34(1+3)+........+388(1+3)
= 4+ 32.4+34.4+........+388.4
= 4 (1+ 32+34+........+388) chia hết cho 4
b)
= (1+3 + 32+ 33) + (34 +35+36+37) .......(386+387+388+ 399 ) có 100:4 = 25 nhóm
= (1+3 + 32+ 33) + 34.(1+3 + 32+ 33) .......386.(1+3 + 32+ 33)
= 40+ 34.40 .......386.40
= 40 ( 1 +34+ 38+....+386) chia hết cho 40
= 4+ 32.4+34.4+........+388.4
= 4 (1+ 32+34+........+388) chia hết cho 4
ở phần câu hỏi tương tự có câu giống hết thế này được trả lời rôi bạn vào đó mà xem
S=(1-3+32-33)+...+(396-397+398-399)
=-20+...+396(1-3+32-33)
=-20+...+396.(-20)=-20(1+..+396) chia hết cho -20 => S là bội của -20
b) 3S=3-32+33-34+..+399-3100
3S+S=(3-32+33-34+..+399-3100)+(1-3+32-33+..+398-399)
4S=1-3100
S=(1-3100):4
Vì S chia hết cho -20=>S chia hết cho 4=>1-3100 chia hết cho 4 => 3100 :4 dư 1
S=(1-3+32-33)+...+(396-397+398-399)
= -20+..+396(1-3+32-33)=-20+..+396.(-20)=-20(1+..+396) chia hết cho -20 => S là bội của -20
s=1-3+32-33+.............+398-399
a]chung minh s la boi cua -20
b]tim s ,tu do suy ra 3100 chia 4 du 1
S = 2 + 2 2 + 2 3 + ... + 2 99 + 2 100
S = ( 2 + 2 2 + 2 3 + 2 4 + 2 5 ) + ... + ( 2 96 + 2 97 + 2 98 + 2 99 + 2 100 )
S = ( 2 + 2 2 + 2 3 + 2 4 + 2 5 ) + ... + ( 2 + 2 2 + 2 3 + 2 4 + 2 5 ) . 2 95
S = 62 + ... + 62 . 2 96
S = 62 ( 1 + ... + 2 96 )
Vì 62 chia hết cho 31
=> 62 ( 1 + ... + 2 96 ) chia hết cho 31
=> S chia hết cho 31
A = 1 + 3^1 + 3^2 + ... + 3^99
3A = 3 + 3^2+ 3^3 + ... + 3^100
3A = ( 3 + 3^2 ) + ( 3^3 + 3^4 ) + ... + ( 3^99 + 3^100 )
3A = 3 ( 1 + 3 ) + 3^3 ( 1 + 3 ) + ... + 3^99 ( 1 + 3 )
3A = 3 . 4 + 3^3 . 4 + ... + 3^99 . 4
3A = 4 . ( 3 + 3^3 + 3^99 ) \(⋮\)4
help mình!!!!!plz
https://olm.vn/hoi-dap/detail/258202696527.html
https://olm.vn/hoi-dap/detail/258180737788.html
a) \(\Rightarrow S=\left(1+3\right)+\left(3^2+3^3\right)+.....+\left(3^{88}+3^{99}\right)\)
\(\Rightarrow A=1\left(1+3\right)+3^2\left(1+3\right)+......+3^{88}\left(1+3\right)\)
\(\Rightarrow A=1.4+3^2.4+..........+3^{88}.4\)
\(\Rightarrow A=4.\left(1+3^2+.........+3^{88}\right)\)
Vậy A chia hết cho 4 ĐPCM
b) \(\Rightarrow A=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)\)\(+......+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)
\(\Rightarrow A=1\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+\)\(....+3^{96}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=1.40+3^4.40+.......+3^{96}.40\)
\(\Rightarrow A=40.\left(1+3^4+....+3^{96}\right)\)
Vậy A chia hết cho 40 ĐPCM
Ta có: S=1+3+3^2+3^3+...+3^99
S = (1+3^1+3^2+3^3) + (3^5+3^6+3^7+3^8) + ... + (3^96+3^97+3^98+3^99) (cứ 4 số hạng gộp lại)
S=(1+3^1+3^2+3^3) + 3^5(1+3^1+3^2+3^3) + ...+3^96(1+3^1+3^2+3^3)
Mà 1+3^1+3^2+3^3 = 40
Nên S= 40 + 3^5.40 +... + 3^96.40
=40.(1+3^5+...+3^96)
=10.4(1+3^5+..+3^96) ( chia hết cho 10)
Vậy S chia hết cho 10
S= ( 1+3+3^2))+...+(3^98+3^99)
=3*(1+3^2)+..+3^98*(1+3^2)
=3*4+...+3^98*4
=3*4+...+3^99*3*4
=12+...+3^99*12
=S=(1+...+3^99)*10 chia het cho10
=> S chia het cho 10
Minh nghi la vayt vi minh cung ko chac la dung neu sai thi mong ban thong cam !