Cho a- b chia hết cho 6. Chứng minh các biểu thức sau chia hết cho 6.
a) a + 5 x b
b) a + 17 x b
c) a - 13 x b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4 :
Thay x=y+5 , ta có :
a ) ( y+5)*(y5+2)+y*(y-2)-2y*(y+5)+65
=(y+5)*(y+7)+y^2-2y-2y^2-10y+65
=y^2+7y+5y+35-y^2-2y-2y^2-10y+65
= 100
Bài 5 :
A = 15x-23y
B = 2x-3y
Ta có : A-B
= ( 15x -23y)-(2x-3y)
=15x-23y-2x-3y
=13x-26y
=13x*(x-2y) chia hết cho 13
=> Nếu A chia hết cho 13 thì B chia hết cho 13 và ngược lại
(a,b phải thuộc N)
a)a+5.b
<=>a-b+6.b
ta có a-b:hết sáu, 6.b chia 6 =b
b)a+17.b
<=>a-b+18.b
Ta có blablabla...
c)Tương tự
Dễ thế bn ơi
a, vì a-b chia hết cho 6 nên avà b chia hết cho 6, vậy ta có a chia hết cho 6, b chia hết cho 6. suy ra:B(b) chia hết cho 6 kết luận : a+5.b chia hết cho 6
b,cx như cách trên vì... suy ra B(b) chia hết cho 6. kết luận:a+b.17 chia hết cho 6
c,ta có:a chia hết cho 6 và b chia hết cho 6, b.13 chia hết cho 6.
Vì 2 số chia hết cho 6 có hiệu chia hết cho 6 nên a-13.b
k đúng cho mik nha(> ‿ ♥) (> ‿ ♥) (> ‿ ♥)
Bài 2:
\(A=\left(x+y\right)^3-3xy\left(x+y\right)+3xy=1^3-3xy+3xy=1\)
Bài 3:
\(M=x^6-x^4-x^4+x^2+x^3-x\)
\(=x^3\left(x^3-x\right)-x\left(x^3-x\right)+\left(x^3-x\right)\)
\(=8x^3-8x+8\)
\(=8\cdot8+8=72\)
A chia hết cho 13
A+B=11x+29y+2x-3y=13x-26y chia hết cho 13
=>B chia hết cho 13
B chia hết cho 13
A+B chia hết cho 13
=>A chia hết cho 13
Giả sử a - b chia hết cho 6, tức là tồn tại số nguyên k sao cho a - b = 6k. (1)
a) Chứng minh a + 5b chia hết cho 6:
Ta có:
a + 5b = (a - b) + 6b.
Từ (1), ta thay thế a - b = 6k vào biểu thức trên:
a + 5b = 6k + 6b = 6(k + b).
Vì k + b là một số nguyên, nên a + 5b chia hết cho 6.
b) Chứng minh a - 13b chia hết cho 6:
Tương tự như trường hợp trên, ta có:
a - 13b = (a - b) - 12b.
Thay thế a - b = 6k (theo (1)) vào biểu thức trên:
a - 13b = 6k - 12b = 6(k - 2b).
Vì k - 2b là một số nguyên, nên a - 13b chia hết cho 6.
a, \(a+5b=\left(a-b\right)+6b\)
Do \(\left\{{}\begin{matrix}a-b⋮6\\6b⋮6\end{matrix}\right.\Rightarrow\left(a-b\right)+6b⋮6\Rightarrow a+5b⋮6\)
b, \(a-13b=\left(a-b\right)-12b\)
Do \(\left\{{}\begin{matrix}a-b⋮6\\-12b⋮6\end{matrix}\right.\Rightarrow\left(a-b\right)-12b⋮6\Rightarrow a-13b⋮6\)
a - b chia hết cho 6
vậy a + b cũng chia hết cho 6
a ) a + 5 x b chia hết cho 6
b ) a + 17 x b chia hết cho 6
c ) a - 13 x b chia hết cho 8
nhé !