chứng minh tổng của n số tự nhiên lẻ đầu tiên là một số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta tính tổng n số lẻ đầu tiên:
S = 1 + 3 + 5 + 7 +...+ (2n - 3) + (2n - 1).
Lúc này ta phải xét hai trường hợp: n chẵn và n lẻ.
Trường hợp 1: n chẵn
S = (1 + 2n - 1) + (3 + 2n - 3)+... Có n/2 số hạng , mà mỗi số hạng có giá trị là 2n
Vậy S = 2n. = n2.
Trường hợp 2: n lẻ
Để tính S ta cũng ghép như trường hợp trên nhưng ta được số hạng, mỗi số hạng có giá trị là 2n. Nên tổng S = .2n + n = = n2
Vậy S = 1 + 3 + 5 + 7 +...+ (2n - 3) + (2n - 1) = n2 nên S là một số chính phương
tong cua n so tu nhien chan tu2 den 2n co phai la 1 so chinh phuong ko vi sao
Tổng của n số lẻ tự nhiên liên tiếp là: 1 + 3 + 5 +... + 2n -1 = (1 + 2n -1) x n : 2= n2 là số chính phương
Vậy tổng của n số lẻ tự nhiên đầu tiên có là số chính phương
Ta tính tổng n số lẻ đầu tiên:
S= 1+3+5+7+...+(2n-3)+(2n-1)
=> ta có 2 trường hợp sau:
TH1: n chẵn:
S=(1+2n-1)+(3+2n-3)+... có n/2 số hạng, mà mỗi số hạng có giá trị là 2n
Vậy S= 2n= n^2
TH2: n lẻ:
Để tính S ta cũng ghép như trường hợp trên nhưng ta đc số hạng ,mỗi số hạng có giá trị là 2n:
=> Tổng S= 2n+n=n^2
Vậy S= 1+3+5+7+...+(2n-3)+(2n-1)= n^2 nên S là 1 số chính phương.
Tổng của n số lẻ tự nhiên liên tiếp là: 1 + 3 + 5 +... + 2n -1 = (1 + 2n -1) x n : 2= n2 là số chính phương
Vậy tổng của n số lẻ tự nhiên đầu tiên có là số chính phương
Tick choa mik cái nào
Chứng minh như sau :
Gọi \(S_{2n+1}\)là tổng của n số lẻ đầu tiên.
Trước tiên ta sẽ đưa tổng sau về dạng tổng quát : \(T_n=1+2+3+...+n\)(Tổng của n số tự nhiên đầu tiên)
Làm như sau : \(T=1+2+3+...+n\)(1)
Viết lại : \(T=n+\left(n-1\right)+\left(n-2\right)+...+3+2+1\)(2)
Cộng (1) và (2) theo vế được : \(2T=\left(n+1\right)+\left(n-1+2\right)+\left(n-2+3\right)+...+\left(3+n-2\right)+\left(2+n-1\right)+\left(1+n\right)\)
\(=\left(n+1\right)+\left(n+1\right)+\left(n+1\right)+...+\left(n+1\right)+\left(n+1\right)+\left(n+1\right)\)( Có tất cả n số hạng (n+1))
\(=n\left(n+1\right)\)\(\Rightarrow T=\frac{n\left(n+1\right)}{2}\)
Ta có : \(S_{2n+1}=1+3+5+...+\left(2n+1\right)=\left(2.0+1\right)+\left(2.1+1\right)+\left(2.2+1\right)+...+\left(2.n+1\right)\)
\(=2.\left(1+2+3+...+n\right)+n+1\)
\(=2.\frac{n\left(n+1\right)}{2}+\left(n+1\right)=n\left(n+1\right)+\left(n+1\right)=\left(n+1\right)\left(n+1\right)=\left(n+1\right)^2\)
Vậy \(S_{2n+1}\)là só chính phương.
Vì n lẻ \(\Rightarrow\)Đặt \(n=2k+1\)( \(k\inℕ\))
Tổng của n số tự nhiên lẻ đầu tiên là: \(1+3+5+.........+\left(2k+1\right)\)
Đặt \(S=1+3+5+......+\left(2k+1\right)\)
Tổng S trên có số số hạng là: \(\frac{\left(2k+1\right)-1}{2}+1=k+1\)
\(\Rightarrow S=\frac{\left[\left(2k+1\right)+1\right].\left(k+1\right)}{2}=\frac{2\left(k+1\right)^2}{2}=\left(k+1\right)^2\)
\(\Rightarrow S\)là số chình phương ( đpcm )
0 điểm