K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2021

1+2+3+4+5+6+7+8+9=133456 hi hi

7 tháng 11 2021

đào xuân anh sao mày gi sai hả

NV
5 tháng 5 2021

Đặt \(A=n^4-10n^2+9\)

\(n^4-n^2-9\left(n^2-1\right)=n.n\left(n-1\right)\left(n+1\right)-9\left(n^2-1\right)\)

Do \(n\left(n-1\right)\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên luôn chia hết cho 3

\(\Rightarrow A⋮3\)

Lại có: \(A=\left(n^2-1\right)\left(n^2-9\right)=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)

Do n lẻ, đặt \(n=2k+1\)

\(\Rightarrow A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1-3\right)\left(2k+1+3\right)\)

\(=2k\left(2k+2\right)\left(2k-2\right)\left(2k+4\right)\)

\(=16k\left(k-1\right)\left(k+1\right)\left(k+2\right)\)

Do \(k\left(k-1\right)\left(k+1\right)\left(k+2\right)\) là tích 4 số nguyên liên tiếp nên luôn chia hết cho 8

\(\Rightarrow A⋮\left(16.8\right)\Rightarrow A⋮128\)

Mà 3 và 128 nguyên tố cùng nhau \(\Rightarrow A⋮\left(128.3\right)\Rightarrow A⋮384\)

25 tháng 1 2022

Thầy ơi cho em hỏi tại sao A lại chia hết cho 16.8 ạ ?? Thầy có thể giải thích được không ạ ?

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

11 tháng 10 2015

Nếu n=2k (k thuộc N) thì n+5=2k+5 chia hết cho 2

Nếu n=2k+1 (k thuộc N) thì n+4 =2k+5 chia hết cho 2

Vậy (n+4)(n+5) chia hết cho 2

 

11 tháng 12 2016

Câu a 

Nếu n=2k thì n+4 = 2k+4 chia hết cho 2 => (n+4)(n+5) chia hết cho 2

Nếu n=2k+1 thì n+5=2k+5+1=2k+6 chia hết cho 2=> (n+4)(n+5) chia hết cho hai

Vậy (n+4)(n+5) chia hết cho 2

Câu b

Ta có n+2012 và n+2013 là hai số tự nhiên liên tiếp

Gọi ƯCLN(n+2012; n+2013)=d

Vì ƯCLN(n+2012;n+2013)=d 

=> n+2012 chia hết cho d, n+2013 chia hết cho d

Mà n+2013-n+2012=1=> d=1

Vậy n+2012 và n+2013 là 2 số nguyên tố cùng nhau

20 tháng 9

Đây là toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau: 

                             Giải

Chứng minh bằng phương pháp phản chứng:

Giả sử A ⋮ 121 ∀ n khi đó ta có với n = k( k \(\in\)n) thì: 

A = k2 + 3k + 5 ⋮ 121 (luôn đúng \(\forall\) k \(\in\) N)

Với n = k + 1 thì

A = (k + 1)2 + 3(k + 1) + 5 ⋮ 121 (luôn đúng \(\forall\) k \(\in\) N) 

⇒ (k + 1).(k + 1) + 3k + 3 + 5⋮ 121

⇒ k2 + k + k + 1 + 3k + 3 + 5 ⋮ 121

⇒ (k2 + 3k + 5) + (k + k) + (1 + 3)⋮ 121

⇒ (k2 + 3k + 5) + 2k + 4 ⋮ 121

⇒ 2k + 4 ⋮ 121

⇒ 2.(k + 2) ⋮ 121

⇒ k + 2 ⋮ 121 (1)

Mà ta có: k2 + 3k + 5 ⋮ 121

               ⇒ k(k + 2) + (k + 2) + 3 ⋮ 121

              ⇒ (k + 2)(k + 1) + 3 ⋮ 121 (2)

Kết hợp (1) và (2) ta có: 3 ⋮ 121 (vô lý)

Vậy điều giả sử là sai hay 

A = n2 + 3n + 5 không chia hết cho 121 với mọi n (đpcm)

 

             

 

     

 

16 tháng 7 2017

a) Phân tích  15 n   + 15 n + 2 = 113.2. 15 n .

b) Phân tích  n 4   –   n 2 = n 2 (n - 1)(n +1).

17 tháng 12 2014

a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)

   60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)

b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.

Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.

c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)

   2100 chia hết cho 15 => 2100b chia hết cho 15 (2)

Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)

d,Ta có : n^2+n+1=nx(n+1)+1

nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.

nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.

10 tháng 6 2015

Mình xin trả lời ngắn gọn hơn!                                                                      a)60 chia hết cho 15=> 60n chia hết cho 15                                                   15 chia hết cho 15                                                                                       =>60n+15 chia hết cho 15.                                                                             60 chia hết cho 30=>60n chia hết cho 30                                                      15 không chia hết cho 30                                                                       =>60n+15 không chia hết cho 30                                             b)Gọi số tự nhiên đó là A                                                                           Giả sử A thỏa mãn cả hai điều kiện                                                           => A= 15.x+6 & = 9.y+1                                                                         Nếu A = 15x +6 => A chia hết cho 3                                                          Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=>                                    c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15.             => 1500a+2100b chia hết cho 15.                                                          d) A chia hết cho 2;5 => A chia hết cho 10.                                                 => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.)                    Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ)                           Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ)                                       => A không chia hết cho 2;5