so sánh phân số : 22014+1 phần 22014 và 22014+2 phần 22014+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^{x+1}\cdot2^{2014}=2^{2015}\\ 2^{x+1}=2^{2015}:2^{2014}\\ 2^{x+1}=2\\ =>x+1=1\\ x=1-1\\ x=0\)
\(S=1-2+2^2-2^3+...+2^{2012}-2^{2013}\)
\(\Rightarrow2S=2-2^2+2^3-2^4+...+2^{2013}-2^{2014}\)
\(\Rightarrow2S+S=2-2^2+2^3-...-2^{2014}+1-2^2-2^3+...-2^{2013}\)
\(\Rightarrow3S=1-2^{2014}\)\(\Rightarrow3S-2^{2014}=1-2^{2015}\)
Đặt N = 1 + 2 + 22 +...+ 22012
2N = 2 + 22 + 23 +...+ 22013
2N - N = (2 + 22 + 23+....+ 22013) - (1 + 2 + 22 +....+ 22012)
N = 22013 - 1
Thay N vào M ta được:
\(M=\dfrac{2^{2013}-1}{2^{2014}-2}=\dfrac{2^{2013}-1}{2\left(2^{2013}-1\right)}=\dfrac{1}{2}\)Đặt \(N=1+2+2^2+...+2^{2012}\)
\(2N=2+2^2+2^3+...+2^{2013}\)
\(2N-N=\left(2+2^2+2^3+...+2^{2013}\right)-\left(1+2+2^2+...+2^{2012}\right)\)
\(N=2^{2013}-1\)
Thay N vào M ta được:
\(M=\dfrac{2^{2013-1}}{2^{2014}-2}=\dfrac{2^{2013}-1}{2\left(2^{2013}-1\right)}=\dfrac{1}{2}\)
A = (42010 + 22014) ⋮ 10
42010 = (42)1005
42010 = \(\overline{...6}\)1005 = \(\overline{..6}\) (1)
22014 = (2503)4.22 = \(\overline{..6}\)4.4
22014 = \(\overline{..6}\).4 = \(\overline{..4}\) (2)
Cộng vế với vế của biểu thức (1) và (2) ta có:
A = 42010 + 22014 = \(\overline{..6}\) + \(\overline{..4}\) = \(\overline{..0}\) ⋮ 10 (đpcm)
Hình như là không
Quá dài nên có thể lẫn lộn
Cách đơn giản hơn
Ta có:
41=4
42=16
43=64
44=256
...
=>Số 4 mũ lẽ tận cùng = 4. Số 4 mũ chẵn tận cùng = 6
Áp dụng vào 42010 ta có:
42010 có mũ là số chẵn
=> 42010 tận cùng là số 6
Tương tự áp dụng vào 22014 :
Ta có:
21= 2
22 = 4
23 = 8
24 =16
25= 32
26 = 64
...
=> Số tận cùng của kết quả theo chu kì 2, 4, 8, 6.
Ta có: 2014 : 4 = 503 (dư 2)
Vậy theo chu kì thì 22014 tận cùng bằng số 4
Ta có:
42010 tận cùng = 6
22014 tận cùng = 4
Tận cùng 2 thừa số này cộng lại ra 10
=> 42010 + 22014 có tận cùng là số 0
=> 42010 + 22014 chia hết cho 10
Chúc bạn hok tốt!
#TTVN
2^2014+1/2^2014>2^2014+2/2^2014+1
2^2014+1/2^2014>2^2014+2/2^2014+1