Tìm 2 số lẻ liên tiếp a và b sao cho
1/a - 1/b = 2/99
( a > b )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{b-a}{axb}=\dfrac{2}{99}\)
Vì \(\dfrac{2}{99}=\dfrac{11-9}{9x11}\) vậy để \(\dfrac{b-a}{axb}=\dfrac{2}{99}\) thì a = 9 và b = 11
( Hai số lẻ có hiệu bằng 2 và tích bằng 99 là 11 và 9 )
Vậy hai số lẻ cần tìm là 11 và 9.
Tìm hai số lẻ liên tiếp a và b sao cho: 1/a - 1/b = 2/99
Ta có 1/a - 1/b = b - a / axb = 2/99
Vì 2/99 = 11 - 9 / 9x11 Vậy để b - a / axb = 2 / 99 Thì a = 9 và b = 11
(Hai số có hiệu bằng 2 và tích bằng 99 là 11 và 9)
Vậy hai số cần tìm là 9 và 11
Ta có 1/a - 1/b = b - a / axb = 2/99 Vì 2/99 = 11 - 9 / 9x11 Vậy để b - a / axb = 2 / 99 Thì a = 9 và b = 11...
li ke nha
1/a - 1/b = 2/99
Vì a và b là 2 số lẻ liên tiếp nên a+2=b
=> 1/a - 1/b = 2/99
=> 1/a - 1/a+2 = 2/99
=> a+2/a(a+2) - a/a(a+2) = 2/99
=> 2 / a(a+2) = 2 /99
=> a(a+2) = 99
=> a=9
=> b = a+2=9+2=11
Vậy a=9 và b=11.
Chúc bn hk tốt!!!
\(\dfrac{1}{a}\) - \(\dfrac{1}{b}\) = \(\dfrac{a-b}{ab}\)
\(\dfrac{2}{ab}\) = \(\dfrac{2}{99}\)
ab = 99
Vì 99 = 9 x 11
mà a và b là hai số lẻ liên tiếp nên a = 9; b = 11
1/a - 1/b =2/99( a< b) nên b-a/axb =2/99
2/axb = 2/99( vì a, b là 2 số lẻ liên tiếp nên b-a = 2
Vậy axb =99=1 x99=3 x 33 = 9 x 11
Vì a, b là 2 số lẻ liên tiếp nên: a=99; b=11
Thử lại: 1/9 - 1/11= 11 - 9 / 99 = 2/99