K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2022
drrbrrbrrbbrrbbbrbbrrrrrb....
14 tháng 1 2022

I. Các công thức lượng giác toán 10 cơ bản

Trong phần I, chúng tôi sẽ giới thiệu các công thức lượng giác toán 10 cơ bản nằm trong chương trình sách giáo khoa lớp 10. Đây là những công thức bắt buộc các em học sinh lớp 10 cần phải học thuộc lòng thì mới có thể làm được những bài tập lượng giác cơ bản nhất. 

1. Bảng giá trị lượng giác của một số cung hay góc đặc biệt :  

2. Hệ thức cơ bản :

3. Cung liên kết :

(cách nhớ: cos đối, sin bù, tan hơn kém pi, phụ chéo)

Đây là những công thức lượng giác toán 10 dành cho những góc có mối liên hệ đặc biệt với nhau như : đối nhau, phụ nhau, bù nhau, hơn kém pi, hơn kém pi/2

• Hai góc đối nhau

cos(–x) = cosx

sin(–x) = – sinx

tan(–x) = – tanx

cot(–x) = – cotx

• Hai góc bù nhau

sin (π - x) = sinx

cos (π - x) = -cosx

tan (π - x) =  -tanx

cot (π - x) = -cotx

• Hai góc hơn kém π

sin (π + x) = -sinx

cos (π + x) = -cosx

tan (π + x) = tanx

cot (π + x) = cotx

• Hai góc phụ nhau

4. Công thức cộng :

(cách nhớ : sin thì sin cos cos sin, cos thì cos cos sin sin dấu trừ, tan thì tan nọ tan kia chia cho mẫu số một trừ tan tan) :  

6. Công thức nhân ba:

       sin3x = 3sinx - 4sin3x

       cos3x = 4cos3x - 3cosx

7. Công thức hạ bậc:

8. Công thức tính tổng và hiệu của sin a và cos a:

11. Công thức biến đổi tích thành tổng :

12 tháng 1 2017

a) Các hằng đẳng thức lượng giác cơ bản:

sin2α + cos2α = 1

1 + tan2α = 1/(cos2α); α ≠ π/2 + kπ, k ∈ Z

1 + cot2α = 1/(sin2α); α ≠ kπ, k ∈ Z

tan⁡α.cot⁡α = 1; α ≠ kπ/2, k ∈ Z

b) Công thức cộng:

cos⁡(a - b) = cos⁡a cos⁡b + sin⁡a sin⁡b

cos⁡(a + b) = cos⁡a cos⁡b - sin⁡a sin⁡b

sin⁡(a - b) = sin⁡a cos⁡b - cos⁡a sin⁡b

sin(a + b) = sina.cosb + cosa.sinb

Giải bài tập Toán 11 | Giải Toán lớp 11

c) Công thức nhân đôi:

sin⁡2α = 2 sin⁡α cos⁡α

cos⁡2α = cos2α - sin2α = 2cos2α - 1 = 1 - 2sin2α

Giải bài tập Toán 11 | Giải Toán lớp 11

d) Công thức biến đổi tích thành tổng:

cos⁡ a cos⁡b = 1/2 [cos⁡(a - b) + cos⁡(a + b) ]

sin⁡a sin⁡b = 1/2 [cos⁡(a - b) - cos⁡(a + b) ]

sin⁡a cos⁡b = 1/2 [sin⁡(a - b) + sin⁡(a + b) ]

Công thức biến đổi tổng thành tích:

Giải bài tập Toán 11 | Giải Toán lớp 11

13 tháng 8 2017

1.Công thức cộng:

sin(x+y)=sinx.cosy+cosx.siny

sin(x-y)=sinx.cosy-cosx.siny

cos(x+y)=cosxcosy-sinxsiny

cos(x-y)=cosxcosy+sinxsiny

tan(x+y)=\(\dfrac{tanx+tany}{1-tanx.tany}\)

tan(x-y)=\(\dfrac{tanx-tany}{1+tanx.tany}\)

2.Công thức nhân đôi:

sin2x=2sinx.cosx

cos2x=cos2x-sin2x=1-2sin2x=2cos2x-1

tan2x=\(\dfrac{2tanx}{1-tan^2x}\)

3. Công thức hạ bậc:

sin2x=\(\dfrac{1-cos2x}{2}\)

cos2x=\(\dfrac{1+cos2x}{2}\)

tan2x=\(\dfrac{1-cos^2x}{1+cos^2x}\)

4. Công thức biến đổi tích thành tổng:

cosx.cosy=\(\dfrac{1}{2}\)[cos(x-y)+cos(x+y)]

sinx.siny=\(\dfrac{1}{2}\)[cos(x-y)-cos(x+y)]

sinx.cosy=\(\dfrac{1}{2}\)[sin(x-y)+sin(x+y)]

5. Công thức biến đổi tổng thành tích:

cosx+cosy=2cos\(\dfrac{x+y}{2}\).cos\(\dfrac{x-y}{2}\)

cosx-cosy=2sin\(\dfrac{x+y}{2}\).sin\(\dfrac{x-y}{2}\)

sinx+siny=2sin\(\dfrac{x+y}{2}\).cos\(\dfrac{x-y}{2}\)

sinx-siny=2cos \(\dfrac{x+y}{2}\).sin \(\dfrac{x-y}{2}\)

9 tháng 6 2018

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

a, Số đo của góc lượng giác (OM, ON) trong Hình 6 là \(60^o\)

b, Số đo của góc lượng giác (OM, ON) trong Hình 6 là \(60^o+2\cdot360^o=780^o\)

c, Số đo của góc lượng giác (OM, ON) trong Hình 6 là \(\dfrac{5}{6}\cdot\left(-360^o\right)=-300^o\)

Công thức tổng quát của số đo góc lượng giác (OM, ON) \(=60^o+360^o\cdot k,k\in Z\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có:

\((O'u',O'v') = (Ou,Ov) + k2\pi \,\, = \, - \frac{{4\pi }}{3}\, + k2\pi \,\,\,\,\,\,\,\,(k \in \mathbb{Z})\)

4 tháng 11 2016

Xem Bảng Công Thức Lượng Giác Đầy Đủ - Toán Học Việt Nam

Link đó zô xem nha k nha 

V
4 tháng 11 2016

thế còn hỏi làm j ?

QT
Quoc Tran Anh Le
Giáo viên
21 tháng 9 2023

\(\begin{array}{l}\cos \left( {\alpha  + \alpha } \right) = \cos 2\alpha  = \cos \alpha \cos \alpha  - \sin \alpha sin\alpha  = {\cos ^2}\alpha  - {\sin ^2}\alpha \\ = {\cos ^2}\alpha  + {\sin ^2}\alpha  - 2{\sin ^2}\alpha  = 1 - 2{\sin ^2}\alpha  = 2{\cos ^2}a - 1\end{array}\)

\(\tan 2\alpha  = \tan \left( {\alpha  + \alpha } \right) = \frac{{\tan \alpha  + \tan \alpha }}{{1 - \tan \alpha .\tan \alpha }} = \frac{{2\tan a}}{{1 - {{\tan }^2}a}}\)

QT
Quoc Tran Anh Le
Giáo viên
21 tháng 9 2023

Ta có:

\(\begin{array}{l}\cos \alpha \cos \beta  = \cos \frac{{\alpha  + \beta }}{2}\cos \frac{{\alpha  - \beta }}{2}\\ = \frac{1}{2}\left[ {\cos \left( {\frac{{\alpha  + \beta }}{2} + \frac{{\alpha  - \beta }}{2}} \right) + \cos \left( {\frac{{\alpha  + \beta }}{2} - \frac{{\alpha  - \beta }}{2}} \right)} \right]\\ = \frac{1}{2}\left( {\cos \alpha  + \cos \beta } \right)\end{array}\)

\(\begin{array}{l}\sin \alpha \sin \beta  = \sin \frac{{\alpha  + \beta }}{2}\sin \frac{{\alpha  - \beta }}{2}\\ = \frac{1}{2}\left[ {\cos \left( {\frac{{\alpha  + \beta }}{2} - \frac{{\alpha  - \beta }}{2}} \right) - \cos \left( {\frac{{\alpha  + \beta }}{2} + \frac{{\alpha  - \beta }}{2}} \right)} \right]\\ = \frac{1}{2}\left( {\cos \beta  - \cos \alpha } \right)\end{array}\)

\(\begin{array}{l}\sin \alpha \cos \beta  = \sin \frac{{\alpha  + \beta }}{2}\cos \frac{{\alpha  - \beta }}{2}\\ = \frac{1}{2}\left[ {\sin \left( {\frac{{\alpha  + \beta }}{2} + \frac{{\alpha  - \beta }}{2}} \right) + \sin \left( {\frac{{\alpha  + \beta }}{2} - \frac{{\alpha  - \beta }}{2}} \right)} \right]\\ = \frac{1}{2}\left( {\sin \alpha  + \sin \beta } \right)\end{array}\)