K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

a, Số đo của góc lượng giác (OM, ON) trong Hình 6 là \(60^o\)

b, Số đo của góc lượng giác (OM, ON) trong Hình 6 là \(60^o+2\cdot360^o=780^o\)

c, Số đo của góc lượng giác (OM, ON) trong Hình 6 là \(\dfrac{5}{6}\cdot\left(-360^o\right)=-300^o\)

Công thức tổng quát của số đo góc lượng giác (OM, ON) \(=60^o+360^o\cdot k,k\in Z\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

Ta có: \(\left(OA,OM\right)=120^o+k\cdot360^o,k\in Z\\ \left(OA,ON\right)=-75^o+k\cdot360^o,k\in Z\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

Công thức tổng quát số đo của góc lượng giác \(\left(Ox,ON\right)=70^o+k\cdot360,k\in Z\)

Công thức tổng quát số đo của lượng giác 

\(\left(Ox,OP\right)=\left(Ox,OM\right)+\left(OM,OP\right)=-50-120^o+m\cdot360^o=-170^o+m\cdot360^o,m\in Z\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Ta có:

- Các góc lượng giác tia đầu Ou, tia cuối Ov có số đo là

sđ\((Ou,Ov) =  {30^ \circ } + n{.360^ \circ }\)

- Các góc lượng giác tia đầu Ov, tia cuối Ow có số đo là

sđ \((Ov,Ow) =  {45^ \circ } + m{.360^ \circ }\)

- Các góc lượng giác tia đầu Ou, tia cuối Ow có số đo là

sđ \((Ou,Ow) =  {75^ \circ } + k{.360^ \circ }\)

b) Với các góc lượng giác ở câu a, ta có:

\(sđ(Ou,Ov) +sđ (Ov,Ow)\)

\(  =  {30^ \circ } + n{.360^ \circ } + {45^ \circ } + m{.360^ \circ } \)

\(= {75^ \circ } + (n+m){.360^ \circ } \)

\(= {75^ \circ } + k{.360^ \circ = sđ (Ou,Ow)} \)

với  k = n + m

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

Vì mâm bánh xe ô tô được chia thành năm phần bằng nhau nên mỗi phần có số đo bằng \(\dfrac{360^o}{5}=72^o\)

Ta có: \(\left(ON,OM\right)=\left(ON,Ox\right)+\left(Ox,OM\right)\\ \Rightarrow\left(ON,Ox\right)=99^o\)

Công thức số đo tổng quát của góc lượng giác \(\left(ON,Ox\right)=99^o+k\cdot360^o,k\in Z\)

QT
Quoc Tran Anh Le
Giáo viên
24 tháng 8 2023

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có bảng chuyển đổi số đo độ và số đo radian của một số góc sau:

Độ

\({18^ \circ }\)

\(\frac{{2\pi }}{9}.\frac{{180}}{\pi } = {40^ \circ }\)

\({72^ \circ }\)

\(\frac{{5\pi }}{6}.\frac{{180}}{\pi } = {150^ \circ }\)

Radian

\(18.\frac{\pi }{{180}} = \frac{\pi }{{10}}\)

\(\frac{{2\pi }}{9}\)

\(72.\frac{\pi }{{180}} = \frac{{2\pi }}{5}\)

\(\frac{{5\pi }}{6}\)

21 tháng 9 2023

Tham khảo:

Điểm biểu diễn góc lượng giác có số đo bằng \( - \frac{{15\pi }}{4} =  - \frac{{7\pi }}{4} + ( - 1).2\pi \) được xác định là điểm M.

Ta có \(\frac{{420}}{{360}} = 1+ \frac{1}{6}\) Ta chia đường tròn thành 6 phần bằng nhau. Khi đó điểm N là điểm biểu diễn bởi góc có số đo \({420^ \circ }\)

 

QT
Quoc Tran Anh Le
Giáo viên
21 tháng 9 2023

Điểm biểu diễn góc lượng giác x có \(cosx = \frac{{ - 1}}{2}\) là M và N.

Số đo góc lượng giác có điểm biểu diễn M là: \(\frac{{2\pi }}{3} + k2\pi ,k \in \mathbb{Z}\).

Số đo góc lượng giác có điểm biểu diễn N là: \(\frac{{4\pi }}{3} + k2\pi ,k \in \mathbb{Z}\).

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)

x

\( - \pi \)

\( - \frac{{2\pi }}{3}\)

\[ - \frac{\pi }{2}\]

\( - \frac{\pi }{3}\)

0

\(\frac{\pi }{3}\)

\(\frac{\pi }{2}\)

\(\frac{{2\pi }}{3}\)

\(\pi \)

\(y = \cos x\)

-1

\( - \frac{1}{2}\)

0

\(\frac{1}{2}\)

1

\(\frac{1}{2}\)

0

\( - \frac{1}{2}\)

-1

 

b) Trong mặt phẳng tọa độ Oxy, hãy biểu diễn các điểm (x; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm \(\left( {x;\cos x} \right)\) với \(x \in \left[ { - \pi ;\pi } \right]\) và nối lại ta được đồ thị hàm số \(y = \cos x\) trên đoạn \(x \in \left[ { - \pi ;\pi } \right]\) (Hình 27)

 

c) Làm tương tự như trên đối với các đoạn \(\left[ { - 3\pi ; - \pi } \right]\), \(\left[ {\pi ;3\pi } \right]\),...ta có đồ thị hàm số \(y = \cos x\)trên R được biểu diễn ở Hình 28.