cho phân số n+19 phần n+6 với n thuộc N tìm n để phân số là tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
G/s n+19/n+6 không tối giản
gọi d là ước chung nguyên tố của n+19;n+6.theo bài ra ta có:
n+19 chia hết cho d
n+6 chia hết cho d
=>13 chia hết cho d
=>d=13
=>n+6 chia hết cho 13
=>n+13-7 chia hết cho 13
=>n-7 chia hết cho 13
=>n-7=13k
=>n=13k+7
vậy \(n\ne13k+7\)thì n+19/n+6 là phân số tối giản
a, để n là stn <=> n+19 chia hết cho n+6
(n+19)-(n+6) chia hết cho n+6
13 chia hết cho n+6
n+6 thuộc Ư(13)
a, để n là số tự nhiên <=> n+19 chia hết cho n+6
(n+19)-9n+6) chia hết cho n+6
13 chia hết cho n+6
n+6 thuộc Ư(13)
= (1;-1;13;-13)
vì thuộc N nên n=1 và n=13
ta cố các trường hợp sau :
n+6=13
n=13-6
n=7
M = \(\dfrac{3n+19}{n-1}\)
M \(\in\)N* ⇔ 3n + 19 ⋮ n - 1
⇔ 3n - 3 + 22 ⋮ n - 1
⇔ 3( n -1) + 22 ⋮ n - 1
⇔ 22 ⋮ n - 1
⇔ n - 1 ⋮ \(\in\){ -22; -11; -2; -1; 1; 2; 11; 22}
⇔ n \(\in\) { -21; -10; -1; 0; 2; 3; 12; 23}
Vì n \(\in\) N* ⇒ n \(\in\) {0; 2; 3; 12; 23}
b, Gọi d là ước chung lớn nhất của 3n + 19 và n - 1
Ta có: \(\left\{{}\begin{matrix}3n+19⋮d\\n-1⋮d\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}3n+19⋮d\\3n-3⋮d\end{matrix}\right.\)
Trừ vế cho vế ta được:
3n + 19 - (3n - 3) ⋮ d
⇒ 3n + 19 - 3n + 3 ⋮ d
⇒ 22 ⋮ d
Ư(22) = { - 22; -11; -2; -1; 1; 2; 22}
⇒ d \(\in\) {1; 2; 11; 22}
nếu n chẵn 3n + 19 lẻ; n - 1 lẻ => d không chia hết cho 2, không chia hết cho 22
nếu n # 11k + 1 => n - 1 # 11k => d không chia hết cho 11
Vậy để phân số M tối giản thì
n \(\in\) Z = { n \(\in\) Z/ n chẵn và n # 11k + 1 ; k \(\in\)Z}