K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2017

14 tháng 8 2022

chịu

14 tháng 2 2019

Ta có : \(a_2+a_{19}=25\)

\(\Leftrightarrow a_1+3+a_{20}-3=25\)

\(\Leftrightarrow a_1+a_{20}=25\)

Tương tự  \(a_3+a_{18}=a_4+a_{17}=...=a_{10}+a_{11}=25\)

\(\Rightarrow S=\left(a_1+a_{20}\right)+\left(a_2+a_{19}\right)+...+\left(a_{10}+a_{11}\right)=10.25=250\)

21 tháng 6 2017

m.n/(m^2+n^2 ) và m.n/2018
- Đặt (m,n)=d => m= da;n=db ; (a,b)=1
=> d^2(a^2+b^2)/(d^2(ab))  = (a^2+b^2)/(ab) => b/a ; a/b => a=b=> m=n=> ( 2n^2+2018)/n^2 =2 + 2018/n^2 => n^2/2018
=> m=n=1 ; lẻ và nguyên tố cùng nhau. vì d=1

23 tháng 8 2017

Vẽ SH _I_ (ABCD) => H là trung điểm AD => CD _I_ (SAD) 
Vẽ HK _I_ SD ( K thuộc SD) => CD _I_ HK => HK _I_ (SCD) 
Vẽ AE _I_ SD ( E thuộc SD). 
Ta có S(ABCD) = 2a² => SH = 3V(S.ABCD)/S(ABCD) = 3(4a³/3)/(2a²) = 2a 
1/HK² = 1/SH² + 1/DH² = 1/4a² + 1/(a²/2) = 9/4a² => HK = 2a/3 
Do AB//CD => AB//(SCD) => khoảng cách từ B đến (SCD) = khoảng cách từ A đến (SCD) = AE = 2HK = 4a/3

Vì an+2 =  an + an+1 => an = an+2 - an+1

Vậy a1 + a2 + ......+ a48 = a- a2 + a4 - a3 + ......+ a50 - a49

                                    = (a3 + a4 + ......+ a50) - (a2 + a3 + ........ + a49)

                                    = a50 - a2 = 300 - 3 = 297

****

4 tháng 5 2015

Vì an+2 =  an + an+1 => an = an+2 - an+1

Vậy a1 + a2 + ......+ a48 = a- a2 + a4 - a3 + ......+ a50 - a49

                                    = (a3 + a4 + ......+ a50) - (a2 + a3 + ........ + a49)

                                    = a50 - a2 = 300 - 3 = 297

26 tháng 5 2020

Quy nạp theo n cho \(a_n=3^n+1\)(@)

+) Với n = 0 ta có: \(a_0=3^0+1=2\) đúng 

Với n = 1 ta có: \(a_1=3^1+1=4\) đúng

=> (@) đúng với n = 0 và n = 1

+) G/s (@) đúng cho đến n 

+) Ta cần chứng minh (@) đúng với n + 1 

Ta có: \(a_{n+1}=3a_n-2=3\left(3^n+1\right)-2=3^{n+1}+1\)

=> (@) đúng với n + 1 

Vậy (@) đúng với mọi n.

2 tháng 11 2023

Ta có

\(a+b+c=1\)

\(\Rightarrow\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)=1\)

Mà \(a^3+b^3+c^3=1\)

\(\Rightarrow3\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)

Do a;b ;c bình đẳng nên giả sử a = - b

\(\Rightarrow a+b+c=1\)

\(\Leftrightarrow-b+b+c=1\Leftrightarrow c=1\)

\(A=a^n+b^n+c^n\) Do n là số TN lẻ nên

\(A=a^n+b^n+c^n=\left(-b\right)^n+b^n+c^n=-b^n+b^n+c^n=c^n=1^n=1\)