Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử a1, a2, ..., a2017 là 2017 số khác nhau.
Và0 < a1 < a2 ... < a2017
Vì là số nguyên dương nên ta có
\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2017}}\le\frac{1}{1}+\frac{1}{2}+...+\frac{1}{2017}\)
\(< 1+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}=1+\frac{2016}{2}=1009\)
Từ đây ta thấy rằng nếu như 2017 số đó là khác nhau thì tổng luôn < 1009 vậy nên để tổng đó bằng 1009 thì phải có ít nhất 2 trong 2017 số đó bằng nhau
có bạn nào làm được bài này theo nguyên lí Đi - rich - lê ko
Bài 2.
\(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)⋮3\)
( 3 số nguyên liên tiếp chia hết cho 3)
\(P-\left(a_1+a_2+a_3+...+a_n\right)=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_n^3-a_n\right)\) chia hết cho 3
=> P chia hết cho 3
Với A1 = 12. Ta sẽ chứng minh An =1 + 3 + ... + (2n-1) = n2 (đáp án d)
Giả sử An đúng với n = k tức Ak = 1 + 3 + ... + (2k - 1) = k2. Ta sẽ chứng minh nó cũng đúng với Ak+1
Thật vậy: Ak+1 = 1 + 3 + ... + (2k-1) + (2k+1) = Ak + 2k + 1 = k2 + 2k + 1 = (k+1)2
Vậy...
chịu