Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b^2+c^2+2\left(ab+bc+ac\right)=a^2+b^2+c^2=1\)
\(ab+bc+ac=0\) và \(\left(a+b\right)^2+\left(b+c\right)^2+\left(a+c\right)^2=2\)
\(\)=> a , b , c có 1 số = 1
=> a = 1
Bài 2:
A = (a+b)(1/a+1/b)
Có: \(a+b\ge2\sqrt{ab}\)
\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\)
=> \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge2\sqrt{ab}.2\sqrt{\frac{1}{ab}}=4\)
=> ĐPCM
1.b)
Pt (1) : 4(n + 1) + 3n - 6 < 19
<=> 4n + 4 + 3n - 6 < 19
<=> 7n - 2 < 19
<=> 7n - 2 - 19 < 0
<=> 7n - 21 < 0
<=> n < 3
Pt (2) : (n - 3)^2 - (n + 4)(n - 4) ≤ 43
<=> n^2 - 6n + 9 - n^2 + 16 ≤ 43
<=> -6n + 25 ≤ 43
<=> -6n ≤ 18
<=> n ≥ -3
Vì n < 3 và n ≥ -3 => -3 ≤ n ≤ 3.
Vậy S = {x ∈ R ; -3 ≤ n ≤ 3}
3. Câu hỏi của Hoàng Đức Thịnh - Toán lớp 8 - Học toán với OnlineMath
Ta có
\(a+b+c=1\)
\(\Rightarrow\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)=1\)
Mà \(a^3+b^3+c^3=1\)
\(\Rightarrow3\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)
Do a;b ;c bình đẳng nên giả sử a = - b
\(\Rightarrow a+b+c=1\)
\(\Leftrightarrow-b+b+c=1\Leftrightarrow c=1\)
\(A=a^n+b^n+c^n\) Do n là số TN lẻ nên
\(A=a^n+b^n+c^n=\left(-b\right)^n+b^n+c^n=-b^n+b^n+c^n=c^n=1^n=1\)