K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2019

\(a^2+b^2+c^2+2\left(ab+bc+ac\right)=a^2+b^2+c^2=1\) 

\(ab+bc+ac=0\) và \(\left(a+b\right)^2+\left(b+c\right)^2+\left(a+c\right)^2=2\)

\(\)=> a , b , c có 1 số = 1

    => a = 1 

2 tháng 8 2019

mình nhìn mà vẫn k hiểu cho lắm

4 tháng 3 2018

Ta có :

a^2>hoặc=0(vì mang số mũ dương)

Tương tự => b^2 và c ^2 như a^2

mà a^2+b^2+c^2=1=>a=b=c=1

=> a^2016+b^2017+c^2018=1

23 tháng 7 2020

Mình nghĩ \(a+b+c=1\) nữa chắc oke hơn :3

\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(\Rightarrow1-3abc=1-ab-bc-ca\Rightarrow3abc=ab+bc+ca\)

\(1=\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(=1+2\left(ab+bc+ca\right)\)

\(\Rightarrow ab+bc+ca=0\Rightarrow3abc=0\)

Nếu \(a=0\Rightarrow b+c=1;b^2+c^2=1;b^3+c^3=1\)

\(\Rightarrow b^2+2bc+c^2=1\Rightarrow2bc=0\Rightarrow b=0\left(h\right)c=0\)

Cứ tiếp tục thì sẽ ra nhá :))

27 tháng 9 2016

không hỉu

29 tháng 9 2016

chỉnh lại rồi nhé

9 tháng 4 2017

Bài 2: 

A = (a+b)(1/a+1/b)

Có: \(a+b\ge2\sqrt{ab}\)

\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\)

=> \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge2\sqrt{ab}.2\sqrt{\frac{1}{ab}}=4\)

=> ĐPCM

11 tháng 4 2018

1.b)

Pt (1) : 4(n + 1) + 3n - 6 < 19
<=> 4n + 4 + 3n - 6 < 19 
<=> 7n - 2 < 19
<=> 7n - 2 - 19 < 0
<=> 7n - 21 < 0
<=> n < 3
Pt (2) : (n - 3)^2 - (n + 4)(n - 4) ≤ 43
<=> n^2 - 6n + 9 - n^2 + 16 ≤ 43
<=> -6n + 25 ≤ 43
<=> -6n ≤ 18
<=> n ≥ -3
Vì n < 3 và n ≥ -3 => -3 ≤ n ≤ 3.
Vậy S = {x ∈ R ; -3 ≤ n ≤ 3}

22 tháng 4 2019

\(\left(n^2-8\right)^2+36\)

\(=n^4-16n^2+64+36\)

\(=\left(n^4+20n^2+100\right)-36n^2\)

\(=\left(n^2+10\right)^2-\left(6n\right)^2\)

\(=\left(n^2+10-6n\right)\left(n^2+10+6n\right)\)

Để n là số nguyên tố thì \(\orbr{\begin{cases}n^2+10-6n=1\\n^2+10+6n=1\end{cases}}\)

Mà do \(n\in N\Rightarrow n^2+10-6n=1\)

\(\Leftrightarrow n^2-6n+9=0\)

\(\Leftrightarrow\left(n-3\right)^2=0\)

\(\Leftrightarrow n-3=0\)

\(\Leftrightarrow n=3\)

Vậy n=3.