K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2019

Ta có : \(a^4+b^4\ge\frac{\left(a^2+b^2\right)\left(a^2+b^2\right)}{2}\ge\frac{2ab\left(a^2+b^2\right)}{2}=ab\left(a^2+b^2\right)\)

\(\Rightarrow a^4+b^4\ge a^3b+ab^3\)

Tương tự \(b^4+c^4\ge b^3c+bc^3\) 

                 \(c^4+a^4\ge a^3c+ac^3\)

Cộng hết vào ta đc

\(2\left(a^4+b^4+c^4\right)\ge a^3b+ab^3+b^3c+bc^3+a^3c+ac^3\)

\(\Leftrightarrow3\left(a^4+b^4+c^4\right)\ge a^4+b^4+c^4+a^3b+ab^3+b^3c+bc^3+a^3c+ac^3\)

\(\Leftrightarrow3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\ge\frac{3}{2}\left(a^3+b^3+c^3\right)\)

=> Đpcm

4 tháng 6 2019

Bài này có lẽ sos là ra ạ! :D Nhưng mà em không chắc chỗ ký hiệu tổng ấy ạ,em không chắc là nên đặt \(\Sigma_{sym}\text{hay là }\Sigma_{cyc}\) trong bài này. Mong chị thông cảm cho ạ!

BĐT \(\Leftrightarrow3\left(a^4+b^4+c^4\right)\ge a^4+b^4+c^4+a^3b+ab^3+b^3c+bc^3+c^3a+ca^3\)

\(\Leftrightarrow2\left(a^4+b^4+c^4\right)-a^3b-ab^3-b^3c-bc^3-c^3a-ca^3\ge0\)

\(\Leftrightarrow\Sigma_{cyc}\left(a^4-a^3b-ab^3+b^4\right)\ge0\)\(\Leftrightarrow\Sigma_{cyc}\left(a^3\left(a-b\right)-b^3\left(a-b\right)\right)\ge0\)

\(\Leftrightarrow\Sigma_{cyc}\left(a^2+ab+b^2\right)\left(a-b\right)^2\ge0\) (đúng)

Ta có Q.E.D. Đẳng thức xảy ra khi a = b = c = 1/2

NV
9 tháng 2 2020

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)

a/ Từ BĐT ban đầu ta có:

\(2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\) (đpcm)

NV
9 tháng 2 2020

b/ Chia 2 vế của BĐT ở câu a cho 9 ta được:

\(\frac{a^2+b^2+c^2}{3}\ge\frac{\left(a+b+c\right)^2}{9}=\left(\frac{a+b+c}{3}\right)^2\) (đpcm)

c/ Cộng 2 vế của BĐT ban đầu với \(2ab+2bc+2ca\) ta được:

\(a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

d/ Áp dụng BĐT ban đầu cho các số \(a^2;b^2;c^2\) ta được:

\(\left(a^2\right)^2+\left(b^2\right)^2+\left(c^2\right)^2\ge a^2b^2+b^2c^2+c^2a^2\)

Mặt khác ta cũng có:

\(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2\ge ab.bc+bc.ca+ab+ca=abc\left(a+b+c\right)\)

\(\Rightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

22 tháng 11 2019

Một kiểu biến đổi tương đương khác.

\(\Leftrightarrow3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\). Giả sử \(c=min\left\{a,b,c\right\}\)

\(VT-VP=\frac{\left(7a^2+8ab-ac+7b^2-bc-2c^2\right)\left(a-b\right)^2+\left(a^2+ac+b^2+bc+2c^2\right)\left(a+b-2c\right)^2}{4}\ge0\)

Ta có qed./.

P/s: Bài giải trong 3 dòng:D

22 tháng 11 2019

Làm sao để biến đổi được như mình? Không hề khó! Ta có:

\(f\left(a;b;c\right)=f_1\left(a-c\right)\left(b-c\right)+f_2\left(a-b\right)^2\) (1)

\(=f_1\left(a-c\right)\left(b-c\right)+f_2\left(a+b-2c+2\left(c-b\right)\right)^2\)

\(=f_1\left(a-b\right)\left(a-c\right)+f_2\left(a+b-2c\right)^2+4f_2\left(a+b-2c\right)\left(c-b\right)+4f_2\left(c-b\right)^2\)

\(=f_1\left(a-b\right)\left(a-c\right)+f_2\left(a+b-2c\right)^2+4f_2\left(c-b\right)\left(a+b-2c+c-b\right)\)

\(=-\left(4f_2-f_1\right)\left(a-b\right)\left(a-c\right)+f_2\left(a+b-2c\right)^2\) (2)

Từ (1) và (2) suy ra \(f\left(a;b;c\right)=\frac{f_2\left(4f_2-f_1\right)\left(a-b\right)^2+f_2.f_1.\left(a+b-2c\right)^2}{4f_2-f_1+f_1}\)

\(=\frac{\left(4f_2-f_1\right)\left(a-b\right)^2+f_1\left(a+b-2c\right)^2}{4}\) (3)

Như vậy, ta chỉ cần tìm được cách phân tích (1) thì sẽ tìm được cách phân tích (3).

Trở lại bài trên: \(VT-VP=2\left(a^4+b^4+c^4\right)-a^3\left(b+c\right)-b^3\left(c+a\right)-c^3\left(a+b\right)\)

\(=\left(a^2+ac+b^2+bc+2c^2\right)\left(a-c\right)\left(b-c\right)+2\left(a^2+ab+b^2\right)\left(a-b\right)^2\)

Từ đó dẫn đến cách phân tích bên trên.

8 tháng 8 2016

à thôi trong CHTT có r
 

14 tháng 1 2018

bạn hỏi cái j z

9 tháng 9 2018

a ) CM : \(a^4+b^4\ge a^3b+b^3a\)

Giả sử điều cần c/m là đúng

\(\Rightarrow a^4+b^4-a^3b-b^3a\ge0\)

\(\Rightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Rightarrow\left(a^3-b^3\right)\left(a-b\right)\ge0\)

\(\Rightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

Ta có : \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\\a^2+ab+b^2=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\ge0\end{matrix}\right.\)

\(\Rightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

\(\Rightarrow a^4+b^4-a^3b-b^3a\ge0\)

\(\Rightarrow a^4+b^4\ge a^3b+b^3a\)

\(\Rightarrow2\left(a^4+b^4\right)\ge a^4+a^3b+b^4+b^3a\)

\(\Rightarrow2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)

\(\left(đpcm\right)\)

9 tháng 9 2018

b ) \(\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)

\(=a^4+a^3b+a^3c+b^3a+b^4+b^3c+c^3a+c^3b+c^4\)

\(=\left(a^4+b^4+c^4\right)+\left(a^3b+b^3a\right)+\left(b^3c+c^3b\right)+\left(a^3c+c^3a\right)\)

CMTT như a ) : \(\left\{{}\begin{matrix}a^4+b^4\ge a^3b+b^3a\\b^4+c^4\ge b^3c+c^3b\\a^4+c^4\ge a^3c+c^3a\end{matrix}\right.\)

\(\Rightarrow2\left(a^4+b^4+c^4\right)\ge a^3b+b^3a+b^3c+c^3b+a^3c+c^3a\)

\(\Rightarrow3\left(a^4+b^4+c^4\right)\ge a^4+b^4+c^4+a^3b+b^3a+b^3c+c^3b+a^3c+c^3a\)

\(\Rightarrow3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\left(đpcm\right)\)

30 tháng 4 2020

Ta có BĐT sau:

\(\frac{a^4+b^4}{a^3+b^3}\ge\frac{a+b}{2}\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\left(true\right)\)

Khi đó tương tự ta có nốt \(\frac{b^4+c^4}{b^3+c^3}\ge\frac{b+c}{2};\frac{c^4+a^4}{c^3+a^3}\ge\frac{c+a}{2}\)

Khi đó \(\frac{a^4+b^4}{a^3+b^3}+\frac{b^4+c^4}{b^3+c^3}+\frac{c^4+a^4}{c^3+a^3}\ge\frac{2\left(a+b+c\right)}{2}=a+b+c\)

Ta dễ chứng minh được 

\(\frac{a^4}{a^3+b^3}+\frac{b^4}{b^3+c^3}+\frac{c^4}{c^3+a^3}=\frac{b^4}{a^3+b^3}+\frac{c^4}{b^3+c^3}+\frac{a^4}{a^3+c^3}\)( trừ cái là xong )

Khi đó \(LHS\ge\frac{a+b+c}{2}\)

Ta có điều phải chứng minh

Đẳng thức xảy ra tại a=b=c

1 tháng 5 2020

Sử dụng BĐT Cauchu Schawrz cũng được

9 tháng 3 2018

thiếu đề, còn gt là a+b+c=3 nữa nha

9 tháng 3 2018

a = b = c = 1