K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2019

Ta có : \(a^4+b^4\ge\frac{\left(a^2+b^2\right)\left(a^2+b^2\right)}{2}\ge\frac{2ab\left(a^2+b^2\right)}{2}=ab\left(a^2+b^2\right)\)

\(\Rightarrow a^4+b^4\ge a^3b+ab^3\)

Tương tự \(b^4+c^4\ge b^3c+bc^3\) 

                 \(c^4+a^4\ge a^3c+ac^3\)

Cộng hết vào ta đc

\(2\left(a^4+b^4+c^4\right)\ge a^3b+ab^3+b^3c+bc^3+a^3c+ac^3\)

\(\Leftrightarrow3\left(a^4+b^4+c^4\right)\ge a^4+b^4+c^4+a^3b+ab^3+b^3c+bc^3+a^3c+ac^3\)

\(\Leftrightarrow3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\ge\frac{3}{2}\left(a^3+b^3+c^3\right)\)

=> Đpcm

4 tháng 6 2019

Bài này có lẽ sos là ra ạ! :D Nhưng mà em không chắc chỗ ký hiệu tổng ấy ạ,em không chắc là nên đặt \(\Sigma_{sym}\text{hay là }\Sigma_{cyc}\) trong bài này. Mong chị thông cảm cho ạ!

BĐT \(\Leftrightarrow3\left(a^4+b^4+c^4\right)\ge a^4+b^4+c^4+a^3b+ab^3+b^3c+bc^3+c^3a+ca^3\)

\(\Leftrightarrow2\left(a^4+b^4+c^4\right)-a^3b-ab^3-b^3c-bc^3-c^3a-ca^3\ge0\)

\(\Leftrightarrow\Sigma_{cyc}\left(a^4-a^3b-ab^3+b^4\right)\ge0\)\(\Leftrightarrow\Sigma_{cyc}\left(a^3\left(a-b\right)-b^3\left(a-b\right)\right)\ge0\)

\(\Leftrightarrow\Sigma_{cyc}\left(a^2+ab+b^2\right)\left(a-b\right)^2\ge0\) (đúng)

Ta có Q.E.D. Đẳng thức xảy ra khi a = b = c = 1/2

23 tháng 5 2020

help me !!!!!!

23 tháng 5 2020

câu 6 là với mọi a,b,c lớn hơn hoặc bằng 1 nhé

8 tháng 8 2017

Dảnh àk =))

8 tháng 8 2017

Cứ đăng đi - úng hộ ^^

28 tháng 9 2018

Ta có: \(\frac{1}{2abc}+\frac{4}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{1}{2}\ge3\sqrt[3]{\frac{4}{4abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

\(\Leftrightarrow\frac{1}{2abc}+\frac{4}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{1}{2}\ge\frac{3}{\sqrt[3]{\left(ab+bc\right)\left(bc+ca\right)\left(ca+ab\right)}}\)

\(\Rightarrow\frac{1}{2abc}+\frac{4}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{1}{2}\ge\frac{3}{\frac{\left(ab+bc\right)+\left(bc+ca\right)+\left(ca+ab\right)}{3}}\)

\(\Leftrightarrow\frac{1}{2abc}+\frac{4}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{9}{2\left(ab+ac+bc\right)}-\frac{1}{2}=1\)

Ta lại có: \(3=ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow\frac{1}{abc}\ge1\Rightarrow\frac{1}{2abc}\ge\frac{1}{2}\)
Cộng vế với vế ta có đpcm
Dấu "=" xảy ra khi a=b=c=1

8 tháng 1 2020

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)

\(=abc+a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+abc+abc\)

\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)( phân tích nhân tử các kiểu )

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-abc\left(1\right)\)

\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)

\(\Rightarrow-abc\ge\frac{-\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

Khi đó:\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

\(=\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\left(2\right)\)

Từ ( 1 ) và ( 2 ) có đpcm

5 tháng 11 2016

Câu 1: a)

b) Áp dụng Bđt Holder ta có:

\(\Rightarrow9\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)^3\)

\(\Rightarrow\frac{a^3+b^3+c^3}{3}\ge\frac{\left(a+b+c\right)^3}{27}=\left(\frac{a+b+c}{3}\right)^3\)(đpcm)

Dấu = khi a=b=c

Câu 2:

Áp dụng Bđt \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)ta có:

\(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+b+1+1}=\frac{4}{3}\)(Đpcm)

Dấu = khi \(a=b=\frac{1}{2}\)

Câu 3:

Áp dụng Bđt \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\left(a+b+c=1\right)\)(Đpcm)

Dấu = khi \(a=b=c=\frac{1}{3}\)

Câu 4: nghĩ sau

1 tháng 7 2019

\(\frac{a^3}{\left(a+b\right)^2}=\frac{a^3}{a^2+2ab+b^2}\ge\frac{a^3}{2\left(a^2+b^2\right)}\)

Xét: \(\frac{a^3}{a^2+b^2}=a-\frac{ab^2}{a^2+b^2}\ge a-\frac{ab^2}{2ab}=a-\frac{b}{2}\)

Tương tự: \(\frac{b^3}{b^2+c^2}\ge b-\frac{c}{2};\frac{c^3}{c^2+a^2}\ge c-\frac{a}{2}\)

Cộng theo vế: \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{a+b+c}{2}\)

Nhân 1/2 vào 2 vế => đpcm. Dấu bằng xảy ra khi a=b=c

1 tháng 8 2020

Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)

Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\)\(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)

Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)

\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*

\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{​​}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)

\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)

Đẳng thức xảy ra khi a = b = c

P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:

27 tháng 7 2020

1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)

\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)

bài 2 xem có ghi nhầm ko

6 tháng 11 2017

\(BDT\Leftrightarrow\frac{a^3}{\left(1-a\right)^2}+\frac{b^3}{\left(1-b\right)^2}+\frac{c^3}{\left(1-c\right)^2}\ge\frac{1}{4}\)

Ta có BĐT phụ: \(\frac{a^3}{\left(1-a\right)^2}\ge a-\frac{1}{4}\)

\(\Leftrightarrow\frac{\left(3a-1\right)^2}{4\left(a-1\right)^2}\ge0\forall0< a\le\frac{1}{3}\)

Tương tự cho 2 BĐT còn lại cũng có:

\(\frac{b^3}{\left(1-b\right)^2}\ge b-\frac{1}{4};\frac{c^3}{\left(1-c\right)^2}\ge c-\frac{1}{4}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge\left(a+b+c\right)-\frac{1}{4}\cdot3=1-\frac{3}{4}=\frac{1}{4}=VP\)

Xảy ra khi \(a=b=c=\frac{1}{3}\)

6 tháng 11 2017

Áp dụng BĐT cô si ta có:

\(\frac{a^3}{\left(b+c\right)^2}+\frac{1a}{4}\ge\frac{a^2}{b+c}\)\(,\frac{b^3}{\left(c+a\right)^2}+\frac{1b}{4}\ge\frac{b^2}{a+c},\frac{c^3}{\left(a+b\right)^2}+\frac{1c}{4}\ge\frac{c^2}{a+b}\)

Cộng lại ta có

\(VT\ge\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}-\frac{1}{4}\left(a+b+c\right)\)

\(\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}-\frac{1}{4}=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}\left(đpcm\right)\)

Dấu =tự tìm Ok