K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2022

l

21 tháng 1 2016

Kb vs mk đi bạn mk thích Kid lm , nha !!!

27 tháng 9 2021

Đặt \(T=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Trong 4 số nguyên \(a,b,c,d\) chắc chắn có 2 số chia hết cho 3 có cùng số dư.

\(\Rightarrow\)Hiệu của chúng chai hết cho 3. Nên T chia hết cho 3\((1)\)

Ta lại có 4 số nguyên\(a,b,c\) hoặc có 2 số chẵn, hai số lẻ, chẳng hạn \(a,b\) là hai số chẵn còn \(c,d\) là hai số lẻ. 

Thì \(a-b\) và \(c-d\) chia hết cho 2 nên \(\left(a-b\right)\left(c-d\right)⋮4\)  

\(\Rightarrow T⋮4\)

Hoặc nếu không phải như trên thì trong 4 số tồng tại 2 số chia hết cho 4 có cùng số dư nên hiệu của chúng chia hết cho 4. 

\(\Rightarrow T⋮4\) 

\(\left(1\right)\left(2\right)\Rightarrow T⋮3;T⋮4\) mà \((3;4)=1\) nên \(T⋮12\left(đpcm\right)\)

30 tháng 1 2022

bài j ghê z =))

30 tháng 1 2022

- Nguyên lí Dirichlet nhé ông.

28 tháng 3 2016

đặt A=(b-a)(c-a)(c-b)(d-b)(c-d)

Trong 4 số a,b,c,d luôn có 2 số chia cho 3 có cùng số dư,do đó hiệu của chúng chia hết cho 3 hay A chia hết cho 3   (1)

Mặt khác: Trong a,b,c,d hoặc phải có 2 số chẵn,2 số lẻ

Chẳng hạn: a,b chẵn;c,d lẻ <=>b-a và d-c chia hết cho 2 <=>(b-a)(d-c) chia hết cho 2.2=4

=>A chia hết cho 4

Hoặc nếu không như vậy thì trong 4 số a,b,c,d sẽ tồn tại 2 số chia cho 4 có cùng số dư nên hiệu của chúng chia hết cho 4 =>A chia hết cho 4  (2)

Từ (1) và (2),kết hợp với (3;4)=1

=>A chia hết cho 3.4=12

=>đpcm
 

 13a + 3 = k² <=> 13a + 3 - 81 = k² - 81 <=> 13a - 78 = k²-9² 
<=> 13(a-6) = (k-9)(k+9) (*) 
do 13 là số nguyên tố nên từ (*) ta phải có k-9 hoặc k+9 chia hết cho 13 
=> k = 13n+9 hoặc k = 13n+4 
có a = (k²-3)/13 ; từ trên thấy k không nhận giá trị 0, -1, +1 nên k²-3 > 0 
Tóm lại các số tự nhiên a có dạng: 
a = [(13n+9)² - 3]/13 hoặc a = [(13n+4)² - 3]/13 với n tùy ý thuộc Z

9 tháng 7 2019

1) 

+) a, b, c là các số nguyên tố lớn hơn 3

=> a, b, c sẽ có dạng 3k+1  hoặc 3k+2

=> Trong 3 số (a-b); (b-c); (c-a) sẽ có ít nhất một số chia hết cho 3

=> (a-b)(b-c)(c-a) chia hết cho 3 (1)

+) a,b,c là các số nguyên tố lớn hơn 3 

=> a, b, c là các số lẻ và không chia hết cho 4

=> a,b, c sẽ có dang: 4k+1; 4k+3

=> Trong 3 số (a-b); (b-c); (c-a) sẽ có ít nhất một số chia hết cho 4

th1: Cả 3 số chia hết cho 4

=> (a-b)(b-c)(c-a) chia hết cho 64   (2)

Từ (1); (2) => (a-b)(b-c)(c-a) chia hết cho 64.3=192  vì (64;3)=1

=> (a-b)(b-c)(c-a) chia hết cho 48

th2: Có 2 số chia hết cho 4, Số còn lại chia hết cho 2

=> (a-b)(b-c)(c-a) chia hết cho 32  (3)

Từ (1) , (3) 

=> (a-b)(b-c)(c-a) chia hết cho 32.3=96  ( vì (3;32)=1)

=>  (a-b)(b-c)(c-a) chia hết cho 48

Th3: chỉ có một số chia hết cho 4, hai số còn lại chia hết cho 2

=>  (a-b)(b-c)(c-a) chia hết cho 16

Vì (16; 3)=1

=>  (a-b)(b-c)(c-a) chia hết cho 16.3=48

Như vậy với a,b,c là số nguyên tố lớn hơn 3

thì  (a-b)(b-c)(c-a) chia hết cho 48