Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Có 4 số a,b,c,d và 3 số dư có thể xảy ra khi chia một số cho 3 là 0,1,2
Do đó áp dụng nguyên lý Dirichlet tồn tại ít nhất [\(\frac{4}{3}\)]+1=2số có cùng số dư khi chia cho 3
Không mất tổng quát giả sử đó là a,b⇒a−b⋮3
⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮3
Mặt khác
Trong 4 số a,b,c,da,b,c,d
Giả sử tồn tại hai số có cùng số dư khi chia cho 4 là a,b
⇒a−b⋮4⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)\(⋮\)4
Nếu a,b,c,d không có số nào có cùng số dư khi chia cho 4. Khi đó giả sử a,b,c,d có số dư khi chia cho 4 lần lượt là 0,1,2,3
⇒c−a⋮2; d−b⋮2
⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4
Như vậy, tích đã cho vừa chia hết cho 3 vừa chia hết cho 4. Do đó nó cũng chia hết cho 12
Ta có đpcm,
Theo nguyên lí Dirichlet, chắc chắn phải có 2 số cùng dư khi chia cho 3
=> tích chia hết cho 3
Nếu có 2 số cùng số dư khi chia cho 4 thì tích chia hết cho 4
Nếu ko có 2 số nào cùng dư thì các số dư là 0,1,2,3 => có 2 số lẻ và 2 số chẵn
Hiệu của 2 số lẻ nhân với hiệu của 2 số chẵn chia hết cho 4 ( vì mỗi hiệu chia hết cho 2) => Tích chia hết cho 4 trong mọi a,b,c,d
Vì (3;4)=1 nên tích chia hết cho 3.4=12
bn vào link này này: https://olm.vn/hoi-dap/question/94063.html(đừng có k sai cho tui nếu lm sai cứ nói vs tui yk tôi ghét bị kick sai lắm '' cảnh báo trước'' ko thì đừng trách nhá
Lời giải:
Có 4 số a,b,c,d và 3 số dư có thể xảy ra khi chia một số cho 3 là 0,1,2
Do đó áp dụng nguyên lý Dirichlet tồn tại ít nhất \(\left[\frac{4}{3}\right]\)+1=2 số có cùng số dư khi chia cho 3
Không mất tổng quát giả sử đó là a,b⇒a−b⋮3
⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮3
Mặt khác:
Trong 4 số a,b,c,d
Giả sử tồn tại hai số có cùng số dư khi chia cho 4 là a,b
⇒a−b⋮4⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4
Nếu a,b,c,d không có số nào có cùng số dư khi chia cho 4. Khi đó giả sử a,b,c,d có số dư khi chia cho 4 lần lượt là 0,1,2,3
⇒c−a⋮2;d−b⋮2
⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4
Như vậy, tích đã cho vừa chia hết cho 3 vừa chia hết cho 4. Do đó no cũng chia hết cho 12
Ta có đpcm,
Lời giải:
$a^2+b^2+c^2+d^2=(a+b)^2-2ab+(c+d)^2-2cd$
$=(a+b)^2+(c+d)^2-2ab-2cd$
$=(a+b+c+d)^2-2(a+b)(c+d)-2ab-2cd\vdots 2$
$\Rightarrow (a+b+c+d)^2\vdots 2$
$\Rightarrow a+b+c+d\vdots 2$
Mà $a,b,c,d$ là số nguyên dương nên $a+b+c+d>2$
Vậy $a+b+c+d$ là số chẵn lớn hơn 2, do đó nó là hợp số (đpcm)
cách suy luận của mình hơi rườm rà, bạn thông cảm :))
Trong 4 số tự nhiên chắc chắn có 2 số cùng số dư khi chia cho 3 (theo nguyên lí Đi-rich-lê, nếu chưa biết nguyên lí này thì điều trên cũng dễ hiểu) => tồn tại một hiệu chia hết cho 3
=> (b-a)(c-a)(d-a)(c-b)(d-b)(d-c) chia hết cho 3
Bây giờ ta chỉ cần chứng minh tích trên chia hết cho 4 là đủ và ta sẽ chứng minh bằng cách có hai hiệu cùng chia hết cho 2
Với bốn số tự nhiên a, b, c, d sẽ xảy ra 5 trường hợp sau:
TH1: cả bốn số đều chẵn
TH2: có ba số chẵn và một số lẻ
TH3: có hai số chẵn và hai số lẻ
TH4: có ba số lẻ và một số chẵn
TH5: cả bốn số đều lẻ
Xét TH1: a, b, c, d đều chẵn, dễ suy ra dpcm
Xét TH2: có ba số chẵn và một số lẻ.
Không giảm tính tổng quát, ta giả sử a, b, c chẵn và d lẻ
=> (a - b) và (b - c) cùng chia hết cho 2 => (a - b)(b - c) chia hết cho 4 => tích chia hết cho 4
Xét TH3: có hai số chẵn và hai số lẻ
Không giảm tổng quát, ta giả sử a và b chẵn còn c và d lẻ
=> (a - b) và (c - d) chia hết cho 2 => (a - b)(c - d) chia hết cho 4 => tích chia hết cho 4
TH4 và TH5 làm tương tự
=> trong mọi trường hợp ta đều có tích chia hết cho 4, mà tích lại chia hết cho 3 và (3, 4) = 1 => dpcm
tink với nhé
lần sau không được copy nữa nhé:
Các bạn giải giúp mìk bài chứng minh 9 này vs!!!? | Yahoo Hỏi & Đáp
đặt A=(b-a)(c-a)(c-b)(d-b)(c-d)
Trong 4 số a,b,c,d luôn có 2 số chia cho 3 có cùng số dư,do đó hiệu của chúng chia hết cho 3 hay A chia hết cho 3 (1)
Mặt khác: Trong a,b,c,d hoặc phải có 2 số chẵn,2 số lẻ
Chẳng hạn: a,b chẵn;c,d lẻ <=>b-a và d-c chia hết cho 2 <=>(b-a)(d-c) chia hết cho 2.2=4
=>A chia hết cho 4
Hoặc nếu không như vậy thì trong 4 số a,b,c,d sẽ tồn tại 2 số chia cho 4 có cùng số dư nên hiệu của chúng chia hết cho 4 =>A chia hết cho 4 (2)
Từ (1) và (2),kết hợp với (3;4)=1
=>A chia hết cho 3.4=12
=>đpcm
13a + 3 = k² <=> 13a + 3 - 81 = k² - 81 <=> 13a - 78 = k²-9²
<=> 13(a-6) = (k-9)(k+9) (*)
do 13 là số nguyên tố nên từ (*) ta phải có k-9 hoặc k+9 chia hết cho 13
=> k = 13n+9 hoặc k = 13n+4
có a = (k²-3)/13 ; từ trên thấy k không nhận giá trị 0, -1, +1 nên k²-3 > 0
Tóm lại các số tự nhiên a có dạng:
a = [(13n+9)² - 3]/13 hoặc a = [(13n+4)² - 3]/13 với n tùy ý thuộc Z