Tìm số có ba chữ số abc, biết rằng ab,c=3.b,c+0,8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- ta có 10a + b +10b +a =176
<=> 10(a+b) +a +b =176
<=> 11(a+b) =176
<=> a + b =16
=> a=7 và b=9 hoặc a=9 và b=7 (vì a khác b)
- Theo đề ta có : c+b=c =>b=0
Vì ac và cb là số có hai chữ số => a=1
=> 10 +c +10c = 100 + c
=> 10c = 90
=>c=9
Vậy số cần tìm là 109
Bài 1:
Giải:
Ta có:
\(\overline{ab}+\overline{bc}=176\)
\(\Rightarrow10a+b+10b+a=176\)
\(\Rightarrow11a+11b=176\)
\(\Rightarrow11\left(a+b\right)=176\)
\(\Rightarrow a+b=16\)
Vì a, b là chữ số nên ta có bảng sau:
a | 7 | 9 | 8 |
b | 9 | 7 | 8 |
Vậy các cặp số \(\left(a;b\right)\) là: \(\left(7;9\right);\left(9;7\right);\left(8;8\right)\)
1 ) Quy ước : (0,abc) là số thập phân mà trước dấu phẩy là số 0, còn sau dấu phẩy là 3 chữ số a,b,c.Và (abc) là stn có 3 chữ số là a,b,c
1 : (0,abc) = a + b + c ---> 1000 / (abc) = a + b + c ---> (abc)*(a + b + c) = 1000 (a#0) (*)
Từ (*) suy ra a chỉ có thể từ 1 đến 3 (vì 400*4 > 1000) ---> 99 < (abc) < 400 (1)
Mặt khác cũng từ (*) ---> (abc) phải là ước của 1000 (2)
Chỉ có 3 stn thỏa mãn (1) và (2) là 100; 125; 250.Trong đó chỉ có 125 thỏa mãn (*)
Vậy (abc) = 125.
2 )
1)Ta có: 1: 0,abc = a + b + c hay
(a+b+c) x abc = 1000
Hay 1000 : abc = a+b+c
1000 chia hết cho số có 3 chữ số có các trường hợp
125 x 8 = 1000 => a=1; b=2; c=5
250 x 4 = 1000 (loại)
500 x 2 = 1000 (loại)
Vậy: abc = 125
2)Gọi số cần tìm là ab. Ta có:
ab = 21 x (a-b)
10.a+b = 21.a - 21.b
11.a = 22.b
Suy ra: a = b x 2
Ta có các số sau: 21; 42; 63; 84