K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2019

Đặt n+18=a^2

n-14 =b^2               (vs a,b thuộc N)

=> 32=a^2-b^2

=> (a-b)(a+b)=32

=> a-b;a+b là ước dương của 32 do a+b>=0

=> Bạn tự xét nốt ước tìm đc a;b => tìm đc n.

15 tháng 11 2019

Để \(n+18\)và \(n-14\) là 1 số chính phương thì:

\(\hept{\begin{cases}n+18=a^2\left(1\right)\\n-14=b^2\left(2\right)\end{cases}}\)

\(\Rightarrow\left(n+18\right)-\left(n-14\right)=a^2-b^2\)(Lấy (1) - (2))

\(\Leftrightarrow n+18-n+14=\left(a-b\right)\left(a+b\right)\)

\(\Leftrightarrow32=\left(a-b\right)\left(a+b\right)\left(3\right)\)

Vì n là số tự nhiên nên: \(n+18>n-14>18\)

Vậy (3), ta được: 

TH1:  \(\hept{\begin{cases}a-b=1\\a+b=32\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a=16\\b=15\end{cases}}\)\(\Rightarrow\hept{\begin{cases}n+18=16^2\\n-14=15^2\end{cases}\Rightarrow\hept{\begin{cases}n=238\\n=239\end{cases}}}\)(loại)

TH2: \(\hept{\begin{cases}a-b=2\\a+b=16\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a=9\\b=7\end{cases}}\)\(\Rightarrow\hept{\begin{cases}n+18=9^2\\n-14=7^2\end{cases}\Rightarrow\hept{\begin{cases}n=63\\n=63\end{cases}\Rightarrow}n=63}\)(nhận)

TH3: \(\hept{\begin{cases}a-b=4\\a+b=8\end{cases}\Rightarrow\hept{\begin{cases}a=6\\b=2\end{cases}}\Rightarrow\hept{\begin{cases}n+18=6^2\\n-14=2^2\end{cases}}\Rightarrow\hept{\begin{cases}n=18\\n=18\end{cases}}\Rightarrow n=18}\)(nhận)

Vậy với n = 63 và n = 18 thì n+18 và n - 14 đều là số chính phương.

(Có thêm bước thử lại thì càng tốt nha Xu)

                         

Với n−18 và n−41 là số chính phương ta có 

Câu hỏi hayHỌC BÀIKIỂM TRALUYỆN TẬPChưa trả lờiHỌC BÀICâu hỏi tôi quan tâmCâu hỏi của bạn bèGửi câu hỏiTrang đầu

27 tháng 7 2023

THeo đề bài ta có

\(n+18=p^2\)

\(n-41=q^2\)

\(\Rightarrow p>q\)

\(\Rightarrow n+18-\left(n-41\right)=59=p^2-q^2\)

\(\Rightarrow\left(p-q\right)\left(p+q\right)=59=1.59\)

TH1

\(\Rightarrow\left\{{}\begin{matrix}p-q=1\\p+q=59\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}p=30\\q=29\end{matrix}\right.\)

Thay p=30 vào \(n+18=p^2\)

\(\Rightarrow n+18=900\Rightarrow n=900-18=882\)

TH2

\(\left\{{}\begin{matrix}p-q=59\\p+q=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}p=30\\q=-29\end{matrix}\right.\)

Giống TH1 có n=882

 

22 tháng 4 2019

\(\hept{\begin{cases}n+18=a^2\\n-41=b^2\end{cases}}\)

=> \(a^2-b^2=59=1.59=59.1=\left(a-b\right)\left(a+b\right)\)

Tự Tính

đặt n+18 = k^2 (1) 
và n - 41 = m^2 (2) 
Lấy (1) trừ (2) ta được: 
k^2 - m^2 = 59 
=> (k-m)(k+m) = 59 
Do k + m > k-m và 59 = 1 . 59 
nên k+m = 59 và k-m = 1 
=> k+m = 59 và k-m = 1 thì k = 30 và m = 29 
Vậy n + 18 = k^2 = 30^2 = 900 
=> n = 882

 

n+18 và n-41 là số cp=>n>41 
đặt n+18=k²=>n=k²-18----(1) 
n-41=t²=>n=t²+41-----(2) 
từ (1)và(2) => k²-18=t²+41 
⇔k²-t²=41+18=59 
⇔(k-t)(k+t)=59=1.59=(-1).(-59) 
TH1 :.....k-t=1 
.............k+t=59 
=>k=30 , t=29 
Thử lại n+18=30²=>n=882 
............n-41=882-41=841=29² (t/m~) 
............n-41=29²=>n=872 
...........n+18=872+18=900=30² (t/m~) 
TH2 :k-t=-1 
........k+t=-59 
=>k=-30 
....t=-29 
Thử lại n+18=(-30)²=>n=882 
...........n-41=(-29)²=>n=872 
Vậy số tự nhiên n là 872 hoặc 882

16 tháng 3 2018

n+18 và n-41 là số cp=>n>41 
đặt n+18=k²=>n=k²-18----(1) 
n-41=t²=>n=t²+41-----(2) 
từ (1)và(2) => k²-18=t²+41  ⇔k²-t²=41+18=59  ⇔(k-t)(k+t)=59=1.59=(-1).(-59) 
TH1 :.....k-t=1 
.............k+t=59 
=>k=30 , t=29 
Thử lại n+18=30²=>n=882 
............n-41=882-41=841=29² (t/m~) 
............n-41=29²=>n=872 
...........n+18=872+18=900=30² (t/m~) 
TH2 :k-t=-1 
........k+t=-59 
=>k=-30 
....t=-29 
Thử lại n+18=(-30)²=>n=882 
...........n-41=(-29)²=>n=872 
Vậy số tự nhiên n là 872 hoặc 882

:3