Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
THeo đề bài ta có
\(n+18=p^2\)
\(n-41=q^2\)
\(\Rightarrow p>q\)
\(\Rightarrow n+18-\left(n-41\right)=59=p^2-q^2\)
\(\Rightarrow\left(p-q\right)\left(p+q\right)=59=1.59\)
TH1
\(\Rightarrow\left\{{}\begin{matrix}p-q=1\\p+q=59\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}p=30\\q=29\end{matrix}\right.\)
Thay p=30 vào \(n+18=p^2\)
\(\Rightarrow n+18=900\Rightarrow n=900-18=882\)
TH2
\(\left\{{}\begin{matrix}p-q=59\\p+q=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}p=30\\q=-29\end{matrix}\right.\)
Giống TH1 có n=882
n+18 và n-41 là số cp=>n>41
đặt n+18=k²=>n=k²-18----(1)
n-41=t²=>n=t²+41-----(2)
từ (1)và(2) => k²-18=t²+41
⇔k²-t²=41+18=59
⇔(k-t)(k+t)=59=1.59=(-1).(-59)
TH1 :.....k-t=1
.............k+t=59
=>k=30 , t=29
Thử lại n+18=30²=>n=882
............n-41=882-41=841=29² (t/m~)
............n-41=29²=>n=872
...........n+18=872+18=900=30² (t/m~)
TH2 :k-t=-1
........k+t=-59
=>k=-30
....t=-29
Thử lại n+18=(-30)²=>n=882
...........n-41=(-29)²=>n=872
Vậy số tự nhiên n là 872 hoặc 882
n+18 và n-41 là số cp=>n>41
đặt n+18=k²=>n=k²-18----(1)
n-41=t²=>n=t²+41-----(2)
từ (1)và(2) => k²-18=t²+41 ⇔k²-t²=41+18=59 ⇔(k-t)(k+t)=59=1.59=(-1).(-59)
TH1 :.....k-t=1
.............k+t=59
=>k=30 , t=29
Thử lại n+18=30²=>n=882
............n-41=882-41=841=29² (t/m~)
............n-41=29²=>n=872
...........n+18=872+18=900=30² (t/m~)
TH2 :k-t=-1
........k+t=-59
=>k=-30
....t=-29
Thử lại n+18=(-30)²=>n=882
...........n-41=(-29)²=>n=872
Vậy số tự nhiên n là 872 hoặc 882
:3
n phai le=> n-41=2=> n=43 (duy nhat chua du)
43+18=61 nhan
ds: n=43
Đặt n+18=a^2
n-14 =b^2 (vs a,b thuộc N)
=> 32=a^2-b^2
=> (a-b)(a+b)=32
=> a-b;a+b là ước dương của 32 do a+b>=0
=> Bạn tự xét nốt ước tìm đc a;b => tìm đc n.
Để \(n+18\)và \(n-14\) là 1 số chính phương thì:
\(\hept{\begin{cases}n+18=a^2\left(1\right)\\n-14=b^2\left(2\right)\end{cases}}\)
\(\Rightarrow\left(n+18\right)-\left(n-14\right)=a^2-b^2\)(Lấy (1) - (2))
\(\Leftrightarrow n+18-n+14=\left(a-b\right)\left(a+b\right)\)
\(\Leftrightarrow32=\left(a-b\right)\left(a+b\right)\left(3\right)\)
Vì n là số tự nhiên nên: \(n+18>n-14>18\)
Vậy (3), ta được:
TH1: \(\hept{\begin{cases}a-b=1\\a+b=32\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a=16\\b=15\end{cases}}\)\(\Rightarrow\hept{\begin{cases}n+18=16^2\\n-14=15^2\end{cases}\Rightarrow\hept{\begin{cases}n=238\\n=239\end{cases}}}\)(loại)
TH2: \(\hept{\begin{cases}a-b=2\\a+b=16\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a=9\\b=7\end{cases}}\)\(\Rightarrow\hept{\begin{cases}n+18=9^2\\n-14=7^2\end{cases}\Rightarrow\hept{\begin{cases}n=63\\n=63\end{cases}\Rightarrow}n=63}\)(nhận)
TH3: \(\hept{\begin{cases}a-b=4\\a+b=8\end{cases}\Rightarrow\hept{\begin{cases}a=6\\b=2\end{cases}}\Rightarrow\hept{\begin{cases}n+18=6^2\\n-14=2^2\end{cases}}\Rightarrow\hept{\begin{cases}n=18\\n=18\end{cases}}\Rightarrow n=18}\)(nhận)
Vậy với n = 63 và n = 18 thì n+18 và n - 14 đều là số chính phương.
(Có thêm bước thử lại thì càng tốt nha Xu)
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
ta có
\(\hept{\begin{cases}n-7=a^2\\n+16=b^2\end{cases}\Rightarrow b^2-a^2=23\Leftrightarrow\left(b+a\right)\left(b-a\right)=23}\)
dễ thấy n phải lớn hơn 7 và b>a nên ta có \(\hept{\begin{cases}a+b=23\\b-a=1\end{cases}\Rightarrow\hept{\begin{cases}a=11\\b=12\end{cases}\Rightarrow}n=128}\)
Số cây cam là:
120:(2+3)x2=48(cây)
Số cây xoài là:
120:(5+1)=20(cây)
Số cây chanh là:
120-(48+20)=52(cây)
Đáp số:52 cây
P/s cho tớ xin lỗi nha nếu bạn nào thì sau này mình sẽ ủng hộ lại ok
Hãy tích cho tui đi
khi bạn tích tui
tui không tích lại bạn đâu
THANKS
-Vì \(n+1,n+13\) là các số chính phương nên đặt \(n+1=a^2,n+13=b^2\)
\(\Rightarrow b^2-a^2=n+13-\left(n+1\right)=12\)
\(\Rightarrow\left(b-a\right)\left(b+a\right)=12=\left[{}\begin{matrix}1.12\\2.6\\3.4\end{matrix}\right.\)
-Vì \(b-a< b+a\)
\(\Rightarrow\left[{}\begin{matrix}b-a=1;b+a=12\\b-a=2;b+a=6\\b-a=3;b+a=4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}b=\dfrac{13}{2};a=\dfrac{11}{2}\left(loại\right)\\b=4;a=2\left(nhận\right)\\b=\dfrac{7}{2};a=\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)
-Vậy \(n=3\) thì n+1 và n+12 đều là các số chính phương.
có
\(\hept{\begin{cases}n+18=a^2\\n-41=b^2\end{cases}}\)
=> \(a^2-b^2=59=1.59=59.1=\left(a-b\right)\left(a+b\right)\)
Tự Tính