K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2021

Sửa đề: Đường cao MH

Áp dụng HTL:

\(MH^2=NH.HP\)

\(\Rightarrow MH=\sqrt{NH.HP}=\sqrt{4.12}=4\sqrt{3}\left(cm\right)\)

\(\left\{{}\begin{matrix}MN^2=NH.NP=4.\left(12+4\right)=64\\MP^2=HP.NP=12\left(12+4\right)=192\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}MN=8\left(cm\right)\\MP=8\sqrt{3}\left(cm\right)\end{matrix}\right.\)

b: Xét ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:

\(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔHAC vuông tại H có HE là đường cao ứng với cạnh huyền AC

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

31 tháng 7 2023

hình vẽ hơi sai nheloading...

a: Xét ΔMNP vuông tại M có 

\(\sin\widehat{N}=\dfrac{MP}{PN}=\dfrac{4}{5}\)

\(\cos\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{5}\)

\(\tan\widehat{N}=\dfrac{MP}{MN}=\dfrac{4}{3}\)

\(\cot\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{4}\)

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:

\(\left\{{}\begin{matrix}MH\cdot NP=MN\cdot MP\\MN^2=HN\cdot NP\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}MH=2.4cm\\NH=1.8cm\end{matrix}\right.\)

15 tháng 3 2022

 minh ko bt 

17 tháng 12 2023

ΔMNP vuông tại M

=>\(NP^2=MN^2+MP^2\)

=>\(NP^2=3^2+4^2=25\)

=>\(NP=\sqrt{25}=5\left(cm\right)\)

Xét ΔMNP vuông tại M có MH là đường cao

nên \(MH\cdot NP=MN\cdot MP\)

=>\(MH\cdot5=3\cdot4=12\)

=>MH=12/5=2,4(cm)

Xét ΔPMN vuông tại M có MH là đường cao

nên \(PH\cdot PN=PM^2\)

=>\(PH\cdot5=4^2=16\)

=>PH=16/5=3,2(cm)

25 tháng 3 2023

M N P H

 

 a)xét \(\Delta HMN\) và \(\Delta MNP \) 

\(\widehat{A}=\widehat{H}=90^o\left(gt\right)\)

\(\widehat{M}\) ( góc Chung)\)

\(\Rightarrow\Delta HMN\sim\Delta MNP\left(g-g\right)\)

 \(\)

b) Theo ddịnh lí Py-ta-go, ta có:

\(NP^2=MN^2+MP^2\\ \Leftrightarrow NP^2=3^2+4^2\\ \Leftrightarrow NP^2=25\\ \Rightarrow NP=5\left(cm\right)\)

 

 

\(\dfrac{HM}{MN}=\dfrac{MP}{NP}\\ \Leftrightarrow\dfrac{HM}{3}=\dfrac{4}{5}\\ \Rightarrow HM=\dfrac{3\cdot4}{5}=2.4\left(cm\right)\)

 

 

) Theo ddịnh lí Py-ta-go, ta có:

\(MN^2=MH^2+NH^2\Rightarrow NH^2=MN^2-MH^2\\ NH^2=3^2-2.4^2=3.24\left(cm\right)\)

 

 

23 tháng 10 2023

Sửa đề; NP=10cm

ΔMNP vuông tại M

=>\(MN^2+MP^2=NP^2\)

=>\(MP^2=10^2-6^2=64\)

=>MP=8(cm)

Xét ΔMNP vuông tại M có MH là đường cao

nên \(MH\cdot NP=MN\cdot MP\)

=>MH*10=6*8=48

=>MH=4,8(cm)

Xét ΔMNP vuông tại M có MH là đường cao

nên \(\left\{{}\begin{matrix}MN^2=NH\cdot NP\\PM^2=PH\cdot PN\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}NH=\dfrac{6^2}{10}=3,6\left(cm\right)\\PH=\dfrac{8^2}{10}=6,4\left(cm\right)\end{matrix}\right.\)

12 tháng 8 2016

ta sử dụng hệ thức lượng trong tam giác vuông  

\(\frac{1}{MN^2}+\frac{1}{MP^2}=\frac{1}{AH^2}\)

mà MN=3MP/4

they vào ta đc : \(\frac{1}{\left(\frac{3}{4}MP\right)^2}+\frac{1}{MP^2}=\frac{1}{12^2}\)

<=> \(\frac{16}{9MP^2}+\frac{1}{MP^2}=\frac{1}{12^2}\)

<==> \(\frac{25}{9MP^2}=\frac{1}{12^2}\)=>\(MP^2=\frac{12^2.15}{9}=240\)

=> MP=\(4\sqrt{15}\)

bài 10: gống cái trên :

tiếp : tính:\(NM=\frac{3}{4}MP=3\sqrt{15}\)

áp dungnj đl pita go ta có : 

NP=\(\sqrt{MN^2+MP^2}=5\sqrt{15}\)

6:

a: AB^2=BH*BC

=>BH(BH+6,4)=6^2

=>BH=3,6cm

b: AC=căn 6,4*10=8cm