a=(1+1/2+1/3+1/4+...+1/54).2.3.4.5...54 chứng minh rằng a chia hết cho 55
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hoàng Việt Bách yêu cầu bn làm 1 câu hỏi khác theo yêu cầu mk ns trog phần tin nhắn nha !!! ! check tin nhắn bn ey !
\(55^{n+1}-55^n\)
\(=55^n.55-55^n\)
\(=55^n.\left(55-1\right)\)
\(=55^n.54\)
Ta có: \(54⋮54\)
\(\Rightarrow55^n.54⋮54\)
\(\Rightarrow55^{n+1}-55^n⋮54\)
đpcm
\(\left(5n+2\right)^2-4\)
\(=\left(5n+2\right)^2+2^2\)
\(=\left(5n+2+2\right).\left(5n+2-2\right)\)
\(=\left(5n+4\right).\left(5n\right)\)
Vậy \(\left(5n+2\right)^2-4\)chia hết cho 5 với mọi số nguyên n
\(A=1+3^2+3^4+...+3^{100}\)
\(9A=3^2+3^4+3^6+...+3^{102}\)
\(8A=3^{102}-1\)
\(\Rightarrow8A-26=3^{102}-1-26=3^{102}-27\)
Vì \(3^{102}-27⋮3\)(1)
\(3^{102}-27⋮2\)(\(3^{102}-27\)là số chẵn ) (2)
\(3^{102}-27=9\left(3^{100}-3\right)\)\(\Rightarrow3^{102}-27⋮9\)(3)
Từ (1) , (2), (3) \(\Rightarrow8A-26⋮54\)\(\left(\left(2,3,9\right)=1\right)\)
vậy ...
\(A=1+3^2+3^4+...+3^{100}\)
\(\Leftrightarrow3^2A=3^2\left(1+3^2+3^4+....+3^{100}\right)\)
\(\Leftrightarrow9A=3^2+3^4+3^6+...+3^{102}\)
\(\Leftrightarrow9A-A=\left(3^2+3^4+3^6+....+3^{102}\right)-\left(1+3^2+3^4+...+3^{100}\right)\)
\(\Leftrightarrow8A=3^{102}-1\)
\(\Leftrightarrow8A-26=3^{102}-1-26=3^{102}-27\)
Ta có: \(3^{102}⋮3;27⋮3\Rightarrow3^{102}-27⋮3\left(1\right)\)
\(3^{102}-27⋮2\left(2\right)\)(3^102 -27 là số lẻ)
\(3^{102}-27=\left(3^2\right)^{51}-27=9^{51}-27⋮9\left(3\right)\)
(1)(2)(3) => 8A-26 chia hết cho 54 (đpcm)
Lời giải:
$55^{n+1}-55^2=55^2[55^{n-1}-1]=55^2(55-1)(55^{n-2}+55^{n-3}+...+55+1)$
$=54.55^2(55^{n-2}+55^{n-3}+...+55+1)\vdots 54$
Ta có đpcm.
Giải
55^(n+1) -55^n
= 55^n.55 -55^n
=55^n( 55 - 1)
=55^n.54 luôn luôn chia hết cho 54 ( do tích có 1 thừa số là 54)
Giải:
Ta có ; 55^(n+1) -55^n
= 55^n.55 -55^n
=55^n( 55 - 1)
=55^n.54 luôn luôn chia hết cho 54 ( do tích có 1 thừa số là 54)
\(55^{n+1}-55^n\)
\(=55^n.55-55^n.1\)
\(=55^n.\left(55-1\right)\)
\(=55^n.54\)
Vì có 54 trong tích
=> 55n . 54 chia hết cho 54
=> Điều phải chứng minh
1) \(55^{n+1}-55^n\) \(= 55^n . 55 - 55^n\)
\(= 55^n(55-1)\)
\(= 55^n . 54\)
\(= 55^n - 54 : 54\)
\(= 55^n\)
1 ta co 55n+1 - 55n = 55n(55-1)=55n .54 vi 54 chia het cho 54 => 55n.54 chia het cho 54
=> 55^n+1 -55^n chia het cho 4
a) n3 - n
= n.(n2 - 1)
= n.(n - 1).(n + 1)
Vì n.(n - 1).(n + 1) là tích 3 số nguyên liên tiếp
=> n.(n - 1).(n + 1) chia hết cho 2 và 3
Mà (2;3)=1 => n.(n - 1).(n + 1) chia hết cho 6
=> n3 - n chia hết cho 6 (đpcm)
b) 55n+1 - 55n
= 55n.55 - 55n
= 55n.(55 - 1)
= 55n.54 chia hết cho 54 (đpcm)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{54}\right).2.3.4.5...54\)
\(\Rightarrow A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{54}\right).2.3.4.5...11.12...54\)
\(\Rightarrow\hept{\begin{cases}A⋮5\\A⋮11\end{cases}}\)mà \(\left(5,11\right)=1\) nên \(A⋮55\left(đpcm\right)\)