Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : 55n + 1 – 55n
= 55n.55 – 55n
= 55n(55 – 1)
= 55n.54
Vì 54 chia hết cho 54 nên 55n.54 luôn chia hết cho 54 với mọi số tự nhiên n.
Vậy 55n + 1 – 55n chia hết cho 54.
Hoàng Việt Bách yêu cầu bn làm 1 câu hỏi khác theo yêu cầu mk ns trog phần tin nhắn nha !!! ! check tin nhắn bn ey !
a) n3 - n
= n.(n2 - 1)
= n.(n - 1).(n + 1)
Vì n.(n - 1).(n + 1) là tích 3 số nguyên liên tiếp
=> n.(n - 1).(n + 1) chia hết cho 2 và 3
Mà (2;3)=1 => n.(n - 1).(n + 1) chia hết cho 6
=> n3 - n chia hết cho 6 (đpcm)
b) 55n+1 - 55n
= 55n.55 - 55n
= 55n.(55 - 1)
= 55n.54 chia hết cho 54 (đpcm)
a, 472014 - 472013 = 472013 . (47 - 1) = 472013 . 46 = 472013 . 2 . 23 ⋮ 23
Vậy 472014 - 472013 ⋮ 23
b, 542014 + 542015 = 542014 . (1 + 54) = 542014 . 55 = 542014 . 5 .11 ⋮ 11
Vậy 542014 + 542015 ⋮ 11
c, 273 + 95 = (33)3 + (32)5 = 39 + 310 = 39 . (1 + 3) = 39 . 4 ⋮ 4
Vậy 273 + 95 ⋮ 4
d, a(2a - 3) - 2a(a + 1) = 2a2 - 3a - 2a2 - 2a = -5a = (-1) . 5 . a ⋮ 5
Vậy a(2a - 3) - 2a(a + 1) ⋮ 5 với mọi a nguyên
Bài làm :
a) 472014 - 472013 = 472013 . (47 - 1) = 472013 . 46 = 472013 . 2 . 23 ⋮ 23
=> Điều phải chứng minh
b) 542014 + 542015 = 542014 . (1 + 54) = 542014 . 55 = 542014 . 5 .11 ⋮ 11
=> Điều phải chứng minh
c) 273 + 95 = (33)3 + (32)5 = 39 + 310 = 39 . (1 + 3) = 39 . 4 ⋮ 4
=> Điều phải chứng minh
d) a(2a - 3) - 2a(a + 1) = 2a2 - 3a - 2a2 - 2a = -5a = (-1) . 5 . a ⋮ 5
=> Điều phải chứng minh
Lời giải:
$55^{n+1}-55^2=55^2[55^{n-1}-1]=55^2(55-1)(55^{n-2}+55^{n-3}+...+55+1)$
$=54.55^2(55^{n-2}+55^{n-3}+...+55+1)\vdots 54$
Ta có đpcm.