K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2019

Có : 55n + 1 – 55n

= 55n.55 – 55n

= 55n(55 – 1)

= 55n.54

Vì 54 chia hết cho 54 nên 55n.54 luôn chia hết cho 54 với mọi số tự nhiên n.

Vậy 55n + 1 – 55n chia hết cho 54.

7 tháng 7 2020

Theo đề ra , ta có :

Có : 55n + 1 – 55n

= 55. 55 – 55n

= 55( 55 – 1 )

= 55. 54

Vì 54 chia hết cho 54 nên 55n.54 luôn chia hết cho 54 với mọi số tự nhiên n

Vậy 55n + 1  –  55n chia hết cho 54.

9 tháng 8 2020

câu 1 đề đúng nha bn

còn đề câu 2 là chia hết cho 45

9 tháng 8 2020

Hoàng Việt Bách yêu cầu bn làm 1 câu hỏi khác theo yêu cầu mk ns trog phần tin nhắn nha !!! ! check tin nhắn bn ey !

15 tháng 9 2016

a) n3 - n

= n.(n2 - 1)

= n.(n - 1).(n + 1)

Vì n.(n - 1).(n + 1) là tích 3 số nguyên liên tiếp 

=> n.(n - 1).(n + 1) chia hết cho 2 và 3

Mà (2;3)=1 => n.(n - 1).(n + 1) chia hết cho 6

=> n3 - n chia hết cho 6 (đpcm)

b) 55n+1 - 55n 

= 55n.55 - 55n 

= 55n.(55 - 1)

= 55n.54 chia hết cho 54 (đpcm)

27 tháng 6 2020

a, 472014 - 472013 = 472013 . (47 - 1) = 472013 . 46 = 472013 . 2 . 23  ⋮ 23

Vậy 472014 - 472013  ⋮ 23

b, 542014 + 542015 = 542014 . (1 + 54) = 542014 . 55 = 542014 . 5 .11  ⋮ 11

Vậy 542014 + 542015  ⋮ 11

c, 273 + 95 = (33)3 + (32)5 = 39 + 310 = 39 . (1 + 3) =  39 . 4 ⋮ 4

Vậy  273 + 95 ⋮ 4

d, a(2a - 3) - 2a(a + 1) = 2a2 - 3a - 2a2 - 2a = -5a = (-1) . 5 . a ⋮ 5

Vậy a(2a - 3) - 2a(a + 1) ⋮ 5 với mọi a nguyên

18 tháng 9 2020

            Bài làm :

a) 472014 - 472013 = 472013 . (47 - 1) = 472013 . 46 = 472013 . 2 . 23  ⋮ 23

=> Điều phải chứng minh

b) 542014 + 542015 = 542014 . (1 + 54) = 542014 . 55 = 542014 . 5 .11  ⋮ 11

=> Điều phải chứng minh

c) 273 + 95 = (33)3 + (32)5 = 39 + 310 = 39 . (1 + 3) =  39 . 4 ⋮ 4

=> Điều phải chứng minh

d) a(2a - 3) - 2a(a + 1) = 2a2 - 3a - 2a2 - 2a = -5a = (-1) . 5 . a ⋮ 5

=> Điều phải chứng minh

AH
Akai Haruma
Giáo viên
29 tháng 11 2023

Lời giải:

$55^{n+1}-55^2=55^2[55^{n-1}-1]=55^2(55-1)(55^{n-2}+55^{n-3}+...+55+1)$

$=54.55^2(55^{n-2}+55^{n-3}+...+55+1)\vdots 54$ 

Ta có đpcm.