K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2017

1) \(55^{n+1}-55^n\) \(= 55^n . 55 - 55^n\)

\(= 55^n(55-1)\)

\(= 55^n . 54\)

\(= 55^n - 54 : 54\)

\(= 55^n\)

21 tháng 9 2017

1 ta co 55n+1 - 55n = 55n(55-1)=55n .54 vi 54 chia het cho 54 => 55n.54 chia het cho 54

=> 55^n+1 -55^n chia het cho 4

9 tháng 6 2017

Ta có: \(55^{n+1}-55^n=55^n.55-55^n\)

\(=55^n.\left(55-1\right)=55^n.54\)

Mặt khác: \(54⋮54\Rightarrow55^n.54⋮54\)

Do đó \(55^{n+1}-55^n⋮54\) (đpcm)

Chúc bạn học tốt!!!

9 tháng 6 2017

\(55^{n+1}-55^n=55^n.55-55^n=55^n\left(55-1\right)=55^n.54⋮54\)Vậy \(55^{n+1}-55^n⋮54\) với \(n\in N\)

30 tháng 10 2020
https://i.imgur.com/J22Q0FJ.jpg
5 tháng 6 2016

 Giải

55^(n+1) -55^n 
= 55^n.55 -55^n 
=55^n( 55 - 1) 
=55^n.54 luôn luôn chia hết cho 54 ( do tích có 1 thừa số là 54)

5 tháng 6 2016

Giải:

Ta có ; 55^(n+1) -55^n

= 55^n.55 -55^n

=55^n( 55 - 1)

=55^n.54 luôn luôn chia hết cho 54 ( do tích có 1 thừa số là 54) 

21 tháng 6 2017

Ta có:

\(55^{n+1}-55^n=55^n.\left(55-1\right)=55^n.54\)

\(54⋮54\) nên \(55^n.54⋮54\)

\(\Rightarrow55^{n+1}-55^n\) chia hết cho 54 (đpcm)

Chúc bạn học tốt!!!

25 tháng 6 2017

\(55^{n-1}-55^n\) \(=55^n.55-55^n\)

\(=55^n\left(55-1\right)\)

\(=55^n.54\)

Vì 54 : 54 nên \(55^n.54:54\)

=> \(55^{n+1}-55^n\) chia hết cho 54 (đccm)

#BẠN_HỌC_TỐT

5 tháng 6 2016

Giải:

Ta có ; 55^(n+1) -55^n

= 55^n.55 -55^n

=55^n( 55 - 1)

=55^n.54 luôn luôn chia hết cho 54 ( do tích có 1 thừa số là 54) 

5 tháng 6 2016

Giải:

Ta có ; 55^(n+1) -55^n

= 55^n.55 -55^n

=55^n( 55 - 1)

=55^n.54 luôn luôn chia hết cho 54 ( do tích có 1 thừa số là 54) 

21 tháng 6 2017

Ta có: \(55^{n+1}-55^n=55^n.55-55^n\)\(55^n\left(55-1\right)=55^n.54\)

Mà  \(55^n.54⋮54\)(luôn đúng) => \(55^{n+1}-55^n⋮54\)(ĐPCM)