K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2018

x^2019+y^2019+z^2019=1

24 tháng 3 2018

Sửa đề phải là \(x,y,z\ge0\)

Ta có: \(\hept{\begin{cases}x,y,z\ge0\\x+y+z=1\end{cases}}\)

\(\Rightarrow0\le x,y,z\le1\)

\(\Rightarrow0\le x^2,y^2,z^2\le1\)

Theo đề bài ta có

\(x^3+y^3+z^3=x+y+z\)

\(\Leftrightarrow x\left(1-x^2\right)+y\left(1-y^2\right)+z\left(1-z^2\right)=0\)

Để dấu = xảy ra và kết hợp với điều kiện đề bài thì ta suy ra được trong 3 số x, y, z có 2 số = 0 và 1 số = 1

\(\Rightarrow S=1\)

18 tháng 12 2020

Ta có : x3 + y3 = z(3xy - z2)

=> x3 + y3 = 3xyz - z3

=> x3 + y3 + z3 - 3xyz = 0

=> (x + y)(x2 - xy + y2) + z3 - 3xyz = 0

=> (x + y)3 - 3xy(x + y) + z3 - 3xyz = 0

=> [(x + y)3 + z3] - 3xy(x + y) - 3xyz  = 0

=> (x + y + z)[(x + y)2 - (x + y)z + z2] - 3xy(x + y + z) = 0

=> (x + y +z)(x2 + y 2 + 2xy - xz - yz + z2) - 3xy(x + y + z) = 0

=> (x + y + z)(x2 + y2 + z2 - xy - yz - zx) = 0

=> x2 + y2 + z2 - xy - yz - zx = 0 (Vì x + y + z = 3)

=> 2(x2 + y2 + z2 - xy - yz - zx) = 0

=> 2x2 + 2y2 + 2z2 - 2xy - 2yz - 2zx = 0

=> (x2 - 2xy + y2) + (y2 - 2yz + z2) + (x2 - 2zx + z2) = 0

=> (x - y)2 + (y - z)2 + (x - z)2 = 0

=> \(\hept{\begin{cases}x-y=0\\y-z=0\\x-z=0\end{cases}}\Rightarrow x=y=z\)

mà x + y + z = 3

=> x = y = z = 1

Khi đó A = 673(x2019 + y2019 + z2019) + 1 

= 673(12019 + 12019 + 12019) + 1

= 673.3 + 1 = 2020

Vậy A = 2020

6 tháng 9 2020

Đặt \(x+6=a;y-7=b;z-9=c\)

\(\Rightarrow\hept{\begin{cases}a+b+c=0\\a^3+b^3+c^3=0\end{cases}}\)

Bạn hiểu chưa :))

6 tháng 9 2020

Đặt x+6=a, y-7=b, z-9=c

Vì x+y+z=10 nên a+b+c=0

Xét \(a^3+b^3+c^3=0\Leftrightarrow a^3+b^3+c^3-3abc=-3abc\)(1)

Ta có đẳng thức (bạn nên học đẳng thức này nhé vì nó cực kì thông dụng trong toán nâng cao):

\(a^3+b^3+c^3-3abc=\frac{\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}{2}\)(2)

Vì a+b+c=0 nên từ (1), (2) suy ra \(\hept{\begin{cases}-3abc=0\\a+b+c=0\end{cases}\Rightarrow a=b=c=0}\)

Vậy M = a2019+b2019+c2019=0

20 tháng 3 2021

Ta có: \(x^3+y^3+z^3=3xyz\)

   \(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz=0\)

   \(\Leftrightarrow\left(x+y+z\right)^3-3.\left(x+y\right).z.\left(x+y+z\right)-3xy\left(x+y\right)-3xyz=0\)

   \(\Leftrightarrow\left(x+y+z\right).\left[\left(x+y+z\right)^2-3.\left(x+y\right).z\right]-3xy\left(x+y+z\right)=0\)

   \(\Leftrightarrow\left(x+y+z\right).\left(x^2+y^2+z^2+2xy+2yz+2zx-3xz-3yz-3xy\right)=0\)

   \(\Leftrightarrow\left(x+y+z\right).\left(x^2+y^2+z^2-xz-yz-xy\right)=0\)

\(x+y+z=0\)\(\Rightarrow\)\(C=\frac{x^{2019}+y^{2019}+z^{2019}}{0}\)( Loại )

\(x^2+y^2+z^2-xz-yz-xy=0\)

\(\Rightarrow2x^2+2y^2+2z^2-2xz-2yz-2xy=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Rightarrow\)\(x=y=z\)

\(\Rightarrow\)\(C=\frac{x^{2019}+x^{2019}+x^{2019}}{\left(x+x+x\right)^{2019}}=\frac{3.x^{2019}}{3^{2019}.x^{2019}}=\frac{1}{3^{2018}}\)

Vậy.......

20 tháng 3 2021

Từ x3 + y3 + z3 = 3xyz

=> ( x + y + z )( x2 + y2 + z2 - xy - yz - xz ) = 0 ( phân tích như bạn kia )

Vì x + y + z ≠ 0

=> x2 + y2 + z2 - xy - yz - xz = 0

<=> 2x2 + 2y2 + 2z2 - 2xy - 2yz - 2xz = 0

<=> ( x - y )2 + ( y - z )2 + ( x - z )2 = 0

VT ≥ 0 ∀ x,y,z. Đẳng thức xảy ra <=> x=y=z

Khi đó \(C=\frac{x^{2019}+y^{2019}+z^{2019}}{\left(x+y+z\right)^{2019}}=\frac{3x^{2019}}{\left(3x\right)^{2019}}=\frac{3x^{2019}}{3^{2019}\cdot x^{2019}}=\frac{1}{3^{2018}}\)

17 tháng 1 2017

Bài 1:Áp dụng C-S dạng engel

\(\frac{3}{xy+yz+xz}+\frac{2}{x^2+y^2+z^2}=\frac{6}{2\left(xy+yz+xz\right)}+\frac{2}{x^2+y^2+z^2}\)

\(\ge\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=\left(\sqrt{6}+\sqrt{2}\right)^2>14\)