cho x+y+z=6 và (x-1)^3+(y-2)^3+(z-3)^3=0 tính (x-1)^2019+(y-2)^2019+(z-3)^2019
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề phải là \(x,y,z\ge0\)
Ta có: \(\hept{\begin{cases}x,y,z\ge0\\x+y+z=1\end{cases}}\)
\(\Rightarrow0\le x,y,z\le1\)
\(\Rightarrow0\le x^2,y^2,z^2\le1\)
Theo đề bài ta có
\(x^3+y^3+z^3=x+y+z\)
\(\Leftrightarrow x\left(1-x^2\right)+y\left(1-y^2\right)+z\left(1-z^2\right)=0\)
Để dấu = xảy ra và kết hợp với điều kiện đề bài thì ta suy ra được trong 3 số x, y, z có 2 số = 0 và 1 số = 1
\(\Rightarrow S=1\)
Ta có : x3 + y3 = z(3xy - z2)
=> x3 + y3 = 3xyz - z3
=> x3 + y3 + z3 - 3xyz = 0
=> (x + y)(x2 - xy + y2) + z3 - 3xyz = 0
=> (x + y)3 - 3xy(x + y) + z3 - 3xyz = 0
=> [(x + y)3 + z3] - 3xy(x + y) - 3xyz = 0
=> (x + y + z)[(x + y)2 - (x + y)z + z2] - 3xy(x + y + z) = 0
=> (x + y +z)(x2 + y 2 + 2xy - xz - yz + z2) - 3xy(x + y + z) = 0
=> (x + y + z)(x2 + y2 + z2 - xy - yz - zx) = 0
=> x2 + y2 + z2 - xy - yz - zx = 0 (Vì x + y + z = 3)
=> 2(x2 + y2 + z2 - xy - yz - zx) = 0
=> 2x2 + 2y2 + 2z2 - 2xy - 2yz - 2zx = 0
=> (x2 - 2xy + y2) + (y2 - 2yz + z2) + (x2 - 2zx + z2) = 0
=> (x - y)2 + (y - z)2 + (x - z)2 = 0
=> \(\hept{\begin{cases}x-y=0\\y-z=0\\x-z=0\end{cases}}\Rightarrow x=y=z\)
mà x + y + z = 3
=> x = y = z = 1
Khi đó A = 673(x2019 + y2019 + z2019) + 1
= 673(12019 + 12019 + 12019) + 1
= 673.3 + 1 = 2020
Vậy A = 2020
cho biết x+y+z=10 và (x+6)3+(y-7)3+(z-9)3 = 0
Tính giá trị biểu thức M= (x+6)2019+(y-7)2019+(z-9)2019
Đặt \(x+6=a;y-7=b;z-9=c\)
\(\Rightarrow\hept{\begin{cases}a+b+c=0\\a^3+b^3+c^3=0\end{cases}}\)
Bạn hiểu chưa :))
Đặt x+6=a, y-7=b, z-9=c
Vì x+y+z=10 nên a+b+c=0
Xét \(a^3+b^3+c^3=0\Leftrightarrow a^3+b^3+c^3-3abc=-3abc\)(1)
Ta có đẳng thức (bạn nên học đẳng thức này nhé vì nó cực kì thông dụng trong toán nâng cao):
\(a^3+b^3+c^3-3abc=\frac{\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}{2}\)(2)
Vì a+b+c=0 nên từ (1), (2) suy ra \(\hept{\begin{cases}-3abc=0\\a+b+c=0\end{cases}\Rightarrow a=b=c=0}\)
Vậy M = a2019+b2019+c2019=0
Ta có: \(x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz=0\)
\(\Leftrightarrow\left(x+y+z\right)^3-3.\left(x+y\right).z.\left(x+y+z\right)-3xy\left(x+y\right)-3xyz=0\)
\(\Leftrightarrow\left(x+y+z\right).\left[\left(x+y+z\right)^2-3.\left(x+y\right).z\right]-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right).\left(x^2+y^2+z^2+2xy+2yz+2zx-3xz-3yz-3xy\right)=0\)
\(\Leftrightarrow\left(x+y+z\right).\left(x^2+y^2+z^2-xz-yz-xy\right)=0\)
+ \(x+y+z=0\)\(\Rightarrow\)\(C=\frac{x^{2019}+y^{2019}+z^{2019}}{0}\)( Loại )
+ \(x^2+y^2+z^2-xz-yz-xy=0\)
\(\Rightarrow2x^2+2y^2+2z^2-2xz-2yz-2xy=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Rightarrow\)\(x=y=z\)
\(\Rightarrow\)\(C=\frac{x^{2019}+x^{2019}+x^{2019}}{\left(x+x+x\right)^{2019}}=\frac{3.x^{2019}}{3^{2019}.x^{2019}}=\frac{1}{3^{2018}}\)
Vậy.......
Từ x3 + y3 + z3 = 3xyz
=> ( x + y + z )( x2 + y2 + z2 - xy - yz - xz ) = 0 ( phân tích như bạn kia )
Vì x + y + z ≠ 0
=> x2 + y2 + z2 - xy - yz - xz = 0
<=> 2x2 + 2y2 + 2z2 - 2xy - 2yz - 2xz = 0
<=> ( x - y )2 + ( y - z )2 + ( x - z )2 = 0
VT ≥ 0 ∀ x,y,z. Đẳng thức xảy ra <=> x=y=z
Khi đó \(C=\frac{x^{2019}+y^{2019}+z^{2019}}{\left(x+y+z\right)^{2019}}=\frac{3x^{2019}}{\left(3x\right)^{2019}}=\frac{3x^{2019}}{3^{2019}\cdot x^{2019}}=\frac{1}{3^{2018}}\)
Bài 1:Áp dụng C-S dạng engel
\(\frac{3}{xy+yz+xz}+\frac{2}{x^2+y^2+z^2}=\frac{6}{2\left(xy+yz+xz\right)}+\frac{2}{x^2+y^2+z^2}\)
\(\ge\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=\left(\sqrt{6}+\sqrt{2}\right)^2>14\)